www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralsberechnung
Integralsberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralsberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Fr 05.06.2009
Autor: marcT

Aufgabe
Berechnen Sie den exakten Wert des folgenden Integrals:
[mm] \integral_{0}^{1} x^2 [/mm] * [mm] e^{-x}\, [/mm] dx

Also ich soll oben stehendes Integral exakt berechnen.
Hab mir gedacht das mit partieller Integration zu machen aber ich komme leider zu keinem vernünftigen Ergebnis.
Habe bisher folgendes gemacht:

[mm] \integral_{0}^{1} x^2 [/mm] * [mm] e^{-x}\, [/mm] dx

[mm] u(x)=x^2 [/mm]
[mm] v'(x)=e^{-x} [/mm]
u'(x)= 2x
v(x)= [mm] -e^{-x} [/mm]

[mm] \integral_{0}^{1} x^2 [/mm] * [mm] e^{-x}\, [/mm] dx = [mm] \left[ x^2 * -e^{-x} \right]^1_0 [/mm] - [mm] \integral_{0}^{1} [/mm] 2x * [mm] -e^{-x}\, [/mm] dx
[mm] =-e^{-1} [/mm] - [mm] \integral_{0}^{1} [/mm] 2x * [mm] -e^{-x}\, [/mm] dx

dann nochmal partielle Integration mit:

u(x)=2x
[mm] v'(x)=-e^{-x} [/mm]
u'(x)= 2
v(x)= [mm] e^{-x} [/mm]

[mm] =-e^{-1} [/mm] - ( [mm] \left[ 2x * e^{-x} \right]^1_0 [/mm] - [mm] \integral_{0}^{1} [/mm] 2 * [mm] e^{-x}\, [/mm] dx )
[mm] =-e^{-1} [/mm] - [mm] (2*e^{-1}) [/mm] + [mm] \integral_{0}^{1} [/mm] 2 * [mm] e^{-x}\, [/mm] dx

dann hab ich nochmal partiell integriert mit:

u(x)=2
[mm] v'(x)=e^{-x} [/mm]
u'(x)= fällt weg
v(x)= [mm] -e^{-x} [/mm]

[mm] =-e^{-1} [/mm] - [mm] (2*e^{-1}) [/mm] + ( [mm] \left[ 2 * -e^{-x} \right]^1_0 [/mm] - [mm] \integral_{0}^{1} -e^{-x}\, [/mm] dx

[mm] =-e^{-1}-2e^{-1}+2*-e^{-1}-(-e^{-1}) [/mm]

Ist das Unsinn was ich da gemacht habe?
Laut geogebra müsste ich für das Integral einen Wert von 0.16 erhalten, wenn ich das oben stehende aber mit einer Näherung für e ausrechne komme ich nicht dahin.
Also wäre sehr nett wenn mir mal jemand sagen könnte wo ich da Mist geabaut habe oder wie man es richtig macht.
Danke Schonmal für evtl. Antworten.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Fr 05.06.2009
Autor: Tyskie84

Hi,

> Berechnen Sie den exakten Wert des folgenden Integrals:
>  [mm]\integral_{0}^{1} x^2[/mm] * [mm]e^{-x}\,[/mm] dx
>  Also ich soll oben stehendes Integral exakt berechnen.
>  Hab mir gedacht das mit partieller Integration zu machen
> aber ich komme leider zu keinem vernünftigen Ergebnis.
>  Habe bisher folgendes gemacht:
>  
> [mm]\integral_{0}^{1} x^2[/mm] * [mm]e^{-x}\,[/mm] dx
>  
> [mm]u(x)=x^2[/mm]
>  [mm]v'(x)=e^{-x}[/mm]
> u'(x)= 2x
> v(x)= [mm]-e^{-x}[/mm]
>  
> [mm]\integral_{0}^{1} x^2[/mm] * [mm]e^{-x}\,[/mm] dx = [mm]\left[ x^2 * -e^{-x} \right]^1_0[/mm]
> - [mm]\integral_{0}^{1}[/mm] 2x * [mm]-e^{-x}\,[/mm] dx
>  [mm]=-e^{-1}[/mm] - [mm]\integral_{0}^{1}[/mm] 2x * [mm]-e^{-x}\,[/mm] dx
>  
> dann nochmal partielle Integration mit:
>  
> u(x)=2x
>  [mm]v'(x)=-e^{-x}[/mm]
> u'(x)= 2
> v(x)= [mm]e^{-x}[/mm]
>  
> [mm]=-e^{-1}[/mm] - ( [mm]\left[ 2x * e^{-x} \right]^1_0[/mm] -
> [mm]\integral_{0}^{1}[/mm] 2 * [mm]e^{-x}\,[/mm] dx )
>  [mm]=-e^{-1}[/mm] - [mm](2*e^{-1})[/mm] + [mm]\integral_{0}^{1}[/mm] 2 * [mm]e^{-x}\,[/mm] dx
>  

bis hier ist alles richtig :-)

> dann hab ich nochmal partiell integriert mit:
>  

brauchst du gar nicht. zieh die [mm] \\2 [/mm] vors Integral;-)

damit hast du dann:

[mm] -3e^{-1}+2\integral_{0}^{1}{e^{-x} dx} [/mm]

[mm] -3e^{-1}+2(-e^{-x}) [/mm]

[mm] \Rightarrow -3e^{-1}-2e^{-1}-2=-5e^{-1}+2\approx [/mm] 0.16

> u(x)=2
>  [mm]v'(x)=e^{-x}[/mm]
> u'(x)= fällt weg
> v(x)= [mm]-e^{-x}[/mm]
>  
> [mm]=-e^{-1}[/mm] - [mm](2*e^{-1})[/mm] + ( [mm]\left[ 2 * -e^{-x} \right]^1_0[/mm] -
> [mm]\integral_{0}^{1} -e^{-x}\,[/mm] dx
>  
> [mm]=-e^{-1}-2e^{-1}+2*-e^{-1}-(-e^{-1})[/mm]
>  
> Ist das Unsinn was ich da gemacht habe?
>  Laut geogebra müsste ich für das Integral einen Wert von
> 0.16 erhalten, wenn ich das oben stehende aber mit einer
> Näherung für e ausrechne komme ich nicht dahin.
>  Also wäre sehr nett wenn mir mal jemand sagen könnte wo
> ich da Mist geabaut habe oder wie man es richtig macht.
>  Danke Schonmal für evtl. Antworten.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

[hut] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]