www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Integralrechnung Dringend !!!
Integralrechnung Dringend !!! < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung Dringend !!!: Frage
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 31.05.2005
Autor: monja

hllilaölle...hab mal eine ganz dringende frage...also wie ich integrale berechnen muss weiß ich nur bei einem hab ich ein problem....ich weiß nciht wie man so integrale berechnet wenn si in Brüche geschrieben sind wie z.B. :

[mm] \integral_{1}^{3} [/mm] {f(x) dx}= [mm] ((1-5x^4/4) [/mm] dx

hab das immer falsch das ergebnis...

danke

lg monja



        
Bezug
Integralrechnung Dringend !!!: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Di 31.05.2005
Autor: banachella

Hallo Monja!

> [mm]\integral_{1}^{3}[/mm] {f(x) dx}= [mm]((1-5x^4/4)[/mm] dx

Meinst du damit [mm] $\int_1^3\bruch{1-5x^4}{4}dx$? [/mm] Dann gilt:
[mm] $\int_1^3\bruch{1-5x^4}{4}dx=\int_1^3\bruch{1}{4}-\bruch{5x^4}{4}dx= \bruch{1}{4}*\int_1^3 1dx-\bruch{5}{4}\int_1^3 [/mm] x^4dx$.
Kommst du damit weiter?

Gruß, banachella



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]