www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integralrechnung
Integralrechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 16:08 Do 01.09.2005
Autor: sonic444

hallo zusammen,
wie löse ich am besten folgendes integral?

[mm] \integral_{}^{} [/mm] { [mm] \bruch{3x³+10x²+19x+29}{x²+x+4} [/mm] dx}

habe es mit polynomdivision probiert und bekomme dann:
[mm] \integral_{}^{} [/mm] {3x dx}+ [mm] \integral_{}^{} [/mm] {7 dx}+ [mm] \integral_{}^{} [/mm] { [mm] \bruch{1}{x²+x+4} [/mm] dx}

das letzte integral zu lösen finde ich allerdings nicht so wirklich einfach.
hatte hier auch schon mal gefrage wie man das letzte integral löst.

gibt einen anderen weg und wenn welchen?
finde keinen ansatz für einen anderen weg.

ich habe diese frage in keinem anderen forum gestellt.
danke!

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Do 01.09.2005
Autor: Toellner

Hallo Sonic,

das finde ich scho ganz schön schwer für den 13. Jahrgang!

> habe es mit polynomdivision probiert und bekomme dann:
>   [mm]\integral_{}^{}{3x dx}+ \integral_{}^{} {7 dx}+ \integral_{}^{}{\bruch{1}{x²+x+4}dx}[/mm]

Ich habe das nicht nachgeprüft und glaube Dir, dass es so stimmt.  

> das letzte integral zu lösen finde ich allerdings nicht so
> wirklich einfach.

Du bringst die Nenner-Parabel n(x) auf Scheitelpunktform:
n(x) = (x+1/2)² + 15/4 = x²+x+4
und substituierst x+1/2 durch z:  dann ist dz = dx (beim Ableiten fällt das 1/2 weg). Jetzt heißt das von Dir gesuchte Integral
[mm]\integral_{}^{}{\bruch{1}{z²+15/4}dz}[/mm]
das hat jetzt die allgemeine Form
[mm]\integral_{}^{}{\bruch{1}{z²+a²}dz} = \bruch{1}{a} \arctan{(\bruch{z}{a})} + C[/mm] , mit Integrationskonstante C,
die ich auch lieber in einer Formelsammlung nachschlage (z.B. im Bronnstein).
arctan ist dasselbe wie [mm] tan^{-1} [/mm] oder INV-tan.
Jetzt substituierst Du z = x + 1/2 zurück und a = [mm] \wurzel{15}/2, [/mm] und das war's...

Ich würde das Integral aber lieber numerisch lösen, also mit dem Rechner, wenn Du ein konkretes Ergebnis brauchst!

Grüße, Richard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]