www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Mo 04.07.2011
Autor: Dust

Aufgabe
Zeigen Sie  ohne Integration, dass die Integralfunktion [mm] h:x \rightarrow \int_{0}^{x} arcsin (f_1(t)) dt; x \in [0;1] [/mm] nur eine Nullstelle haben kann

Guten Morgen,

Vorweg. Diese Aufgabe ist Teil einer Einsendeaufgabe. Ich hoffe ihr könnt mir trotzdem helfen.

Wenn ich den Graphen  dieser Funktion auf ein Funktionenplotter ausgebe zeigt sich, das er genau  eine Nullstelle hat. Würde es in diesen Fall reichen, wenn Ich eine Kurvendiskussion mache? Oder mache ich mir das zu einfach?
Ich komme auf diese Idee, weil in der Aufgabenstellung "ohne Integration" steht.

Ich habe diese Frage in keinen anderen Forum gestellt.

Vielen Dank im Vorraus

Gruß Dust

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Mo 04.07.2011
Autor: fred97


> Zeigen Sie  ohne Integration, dass die Integralfunktion [mm]h:x \rightarrow \int_{0}^{x} arcsin (f_1(t)) dt; x \in [0;1][/mm]
> nur eine Nullstelle haben kann
>  Guten Morgen,
>  
> Vorweg. Diese Aufgabe ist Teil einer Einsendeaufgabe. Ich
> hoffe ihr könnt mir trotzdem helfen.
>  
> Wenn ich den Graphen  dieser Funktion auf ein
> Funktionenplotter ausgebe zeigt sich, das er genau  eine
> Nullstelle hat. Würde es in diesen Fall reichen, wenn Ich
> eine Kurvendiskussion mache? Oder mache ich mir das zu
> einfach?
>  Ich komme auf diese Idee, weil in der Aufgabenstellung
> "ohne Integration" steht.


Du hast nicht mitgeteilt, was [mm] f_1 [/mm] ist  !!!

Wie auch immer, ich würde es so machen. Nimm an, h habe in [0,1] zwei Nullstellen a und b, etwa $0 [mm] \le [/mm] a<b [mm] \le [/mm] 1$.

Mit dem Mittelwertsatz bekommst Du ein t [mm] \in [/mm] (a,b) mit h'(t)=0

Außerdem solltest Du noch den Hauptsatz beherzigen:

SATZ:
Sei [mm] f\colon[a,b]\rightarrow\mathbb \IR [/mm] eine reellwertige stetige Funktion auf dem abgeschlossenen Intervall [a,b] [mm] \subset \IR, [/mm] so ist  die Integralfunktion

  [mm] F(x):=\int_{x_0}^{x}f(t){\rm d}t [/mm]

differenzierbar und eine Stammfunktion zu f, d. h., es gilt [mm] F^{\prime}(x)=f(x) [/mm] für alle x [mm] \in [/mm] [a,b]

FRED

>  
> Ich habe diese Frage in keinen anderen Forum gestellt.
>  
> Vielen Dank im Vorraus
>  
> Gruß Dust


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]