www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 21.02.2011
Autor: Topspinkiller

Aufgabe
Bei einer Telefonabstimmung im Fernsehnen beschreibt f mit [mm] f(t)=(50t^4)*e^t [/mm] modelhaft die pro Minute ankommenden Anrufe nach Beginn der Aktion.
a) Was bedeutet in diesem Zusammenhang die Funktionswerte der Integralfunktion?
b)Nach welcher Zeit sind insgesamt 500 Anrufe eingegangen?
c)Die Telefonzentrale kann höchtens 200 Anrufe pro Minute entgegennehmen. Wann ist die Zahl der Anrufer in der Warteschleife am größten? Wie groß ist diese Anzahl?

zu a)
Meint man da, dass man wenn man die Fläche unter dem Schaubild nimmt, alle Anrufer die je angerufen haben, hat?
zu b)
Man muss das Inegral ungekehrt nehmen, aber wie geht das? Vorallem wie mit dem Taschenrechner?
zu c)
Wie muss ich da vorgehn, muss ich integrieren? Was hat ich dann erreicht?

Vielen dank für deine Hilfe

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Mo 21.02.2011
Autor: notinX

Hallo,

> Bei einer Telefonabstimmung im Fernsehnen beschreibt f mit
> [mm]f(t)=(50t^4)*e^t[/mm] modelhaft die pro Minute ankommenden
> Anrufe nach Beginn der Aktion.
> a) Was bedeutet in diesem Zusammenhang die Funktionswerte
> der Integralfunktion?
>  b)Nach welcher Zeit sind insgesamt 500 Anrufe
> eingegangen?
>  c)Die Telefonzentrale kann höchtens 200 Anrufe pro Minute
> entgegennehmen. Wann ist die Zahl der Anrufer in der
> Warteschleife am größten? Wie groß ist diese Anzahl?
>  zu a)
>  Meint man da, dass man wenn man die Fläche unter dem
> Schaubild nimmt, alle Anrufer die je angerufen haben, hat?

Richtig. Die Fläche zwischen Graph der Funktion und t-Achse im Intervall [0,t] entspricht der Anzahl der Anrufer in der Zeit t.

>  zu b)
>  Man muss das Inegral ungekehrt nehmen, aber wie geht das?

Die Zahl der Anrufer, ich nenne sie mal [mm] $n_A(t)$ [/mm] wird durch das Integral aus Aufgabe a beschrieben. Um rauszufinden, wann es 500 sind, setze
[mm] $n_A(t)=500$ [/mm]
und löse nach t auf.

> Vorallem wie mit dem Taschenrechner?

Das geht mit einem gewöhnlichen Taschenrechner gar nicht und das sollte Dich auch nicht interessieren, solange Du es nicht "von Hand" kannst.

>  zu c)
>  Wie muss ich da vorgehn, muss ich integrieren? Was hat ich
> dann erreicht?

Ich nehme, an die Aufgabenstellung ist falsch. Steht da viellecht [mm] $f(t)=50t^4e^{-t}$ [/mm] ?
Sonst macht diese Frage keinen Sinn.

>  
> Vielen dank für deine Hilfe

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]