www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Do 07.10.2010
Autor: Mathics

Hallo,

ich habe mal kurz eine Frage. Und zwar komme ich grad nicht weiter. Denn:

Wieso ist [mm] \integral_{1}^{x}{f(-2x+4) dx} [/mm]  dasselbe wie [mm] \integral_{3}^{x}{f(-2x+4) dx} [/mm]

Da komme ich echt nicht weiter!

Könnte mir das jemand evtl. in einfacher Weise erklären?

Danke

LG

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Do 07.10.2010
Autor: M.Rex

Hallo


> Hallo,
>  
> ich habe mal kurz eine Frage. Und zwar komme ich grad nicht
> weiter. Denn:
>  
> Wieso ist [mm]\integral_{1}^{x}{f(-2x+4) dx}[/mm]  dasselbe wie
> [mm]\integral_{3}^{x}{f(-2x+4) dx}[/mm]

Das liegt daran, dass die Nullstelle von f(x)=-2x+4 bei x=2 liegt, und die Fläche zwischen x-Achse und Graph rechts von x=2 unter die x-Achse rutscht, und somit ein negatives Vorzeichen bekommt. Ausserdem schreibt man die Funktionszbezeichnung nicht in das Integral.
Die Korrekte Schreibweise deiner Integrale wäre:
[mm] \integral_{1}^{x}-2x+4dx=\left[-x^{2}+4x\right]_{1}^{x}=(-1^{2}+4*1)-(-x^{2}+4x)=3-x^{2}-4x [/mm]

Und [mm] \integral_{3}^{x}-2x+4dx=\left[-x^{2}+4x\right]_{1}^{x}=(-3^{2}+4*3)-(-x^{2}+4x)=3-x^{2}-4x [/mm]


>  
> Da komme ich echt nicht weiter!
>  
> Könnte mir das jemand evtl. in einfacher Weise erklären?
>  
> Danke
>  
> LG

Marius


Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Do 07.10.2010
Autor: pelzig

Noch ein Hinweis: Man sollte also Integrationsvariable nicht einen Bezeichner nehmen, der schon für irgendwas anderes benutzt wird. Also statt [mm]\int_1^x(-2x+4)dx[/mm] schreibe [mm]\int_1^x(-2\xi+5)d\xi[/mm] oder ähnliches.

Viele Grüße, Robert


Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Do 07.10.2010
Autor: Steffi21

Hallo Marius, du hast die Grenzen verwechselt und einen Vorzeichenfehler, es kommt jeweils [mm] -x^{2}+4x-3 [/mm] raus, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]