www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage zu der Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 16:27 Mi 22.09.2010
Autor: Julia92

Hallo,

ich habe einmal eine Frage zur folgenden Aufgabesellung (aus dem Buch Elemente der Mathematik von Schroedel, s.173 Nr.29):


" Für 0< k< 3 ist die Funktionschar f k gegeben durch f [mm] k(x)=-x^2+kx. [/mm] Wie ist k zu wählen, damit die Fläche zwischen dem Graphen von f k unf der 1. Achse zwischen x=0 und x=3 minimal wird?"

1. Ansatz

Ich habe mir überlegt das Integral zu bilden. Die Nullstellen sind hier ja die Schnittpunkte: N1(0/0), N2(k/0). Wenn ich das weiterverfolge, komme ich auf den Flächeninhalt von [mm] k^3/6. [/mm] Davon dachte ich, müsste ich die erste Ableitung bestimmen, um den Tiefpunkt, der dann mein Minimum ist, auszurechnen. Das Minimum läge dann aber bei 0 -> Widerspruch zur Aufgabenstellung 0<k<3!

also falsch?

2. Ansatz:

Die Fläche, die bestimmt werden soll, liegt zwischen den Punkten x=0 und x=3.
-> Integral bestimmt: 9+9k/2
Davon das Minmum bestimmen durch Ableitung, was aber nicht funktioniert da die erste Ableitung mit 0 gleichgesetzt werden muss-> 9/2 ungleich 0


Irgendwie komme ich nicht weiter, habe ich den Aufgabenstellung falsch verstanden. Hat jemand einen Tipp?




        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Mi 22.09.2010
Autor: M.Rex

Hallo


> Hallo,
>  
> ich habe einmal eine Frage zur folgenden Aufgabesellung
> (aus dem Buch Elemente der Mathematik von Schroedel, s.173
> Nr.29):
>  
>
> " Für 0< k< 3 ist die Funktionschar f k gegeben durch f
> [mm]k(x)=-x^2+kx.[/mm] Wie ist k zu wählen, damit die Fläche
> zwischen dem Graphen von f k unf der 1. Achse zwischen x=0
> und x=3 minimal wird?"
>  
> 1. Ansatz
>  
> Ich habe mir überlegt das Integral zu bilden. Die
> Nullstellen sind hier ja die Schnittpunkte: N1(0/0),
> N2(k/0).

DieFläche zwischen den Nullstellen sind aber nur ein Teil der gesuchten Gesamtfläche, diese berechnest du mit

[mm] A=\left|\integral_{0}^{k}-x^{2}+kxdx\right|+\left|\integral_{k}^{\red{3}}-x^{2}+kxdx\right| [/mm]

Marius

Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Mi 22.09.2010
Autor: Julia92

danke! habs nun hinbekommen(-;

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]