www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Di 22.06.2010
Autor: keewie

Aufgabe
[mm] y(x)=3*\wurzel{x} [/mm]

Gesucht ist die Fläche unter der kurve von 0,5 bis 4,0

Diese Aufgabe wollte ich eben lösen. Jedoch habe ich bei der Korrektur festgestellt das ich die Stammfunktion von 3 und [mm] \wurzel{x} [/mm] in meine Rechnung mit reingenommen habe. Richtig wäre aber nur die [mm] \wurzel{x} [/mm] und die 3 vor das Integral.

Woher weiß ich was man vor das Integral schiebt und von was ich dann noch die Stammfunktion suchen muß?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Di 22.06.2010
Autor: Steffi21

Hallo, die 3 ist doch ein konstanter Faktor, Steffi

Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Di 22.06.2010
Autor: keewie

Aufgabe
und warum ist hier 0,5 kein konstanter Faktor?

y(x)=0,5x²-2x

Entweder steh ich grad tierisch auf dem Schlauch ...

Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Di 22.06.2010
Autor: Kimmel

Es ist doch eins?
Primitiv ausgedrückt, ist alles was vor [mm]x[/mm] steht, ein konstanter Faktor.


Bezug
                                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Di 22.06.2010
Autor: keewie

ok, aber den Faktor muß man erkennen, wenn man von dem auch die Stammfunktion sucht stimmt das Ergebnis nicht, richtig?

Ob ich den dann vor das Integral nehme oder im Betrag als Faktor (und nicht wie ich gemacht habe als Stammfunktion) verarbeite ist aber egal?

Bezug
                                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Di 22.06.2010
Autor: fencheltee


> ok, aber den Faktor muß man erkennen, wenn man von dem
> auch die Stammfunktion sucht stimmt das Ergebnis nicht,
> richtig?
>  
> Ob ich den dann vor das Integral nehme oder im Betrag als
> Faktor (und nicht wie ich gemacht habe als Stammfunktion)
> verarbeite ist aber egal?

ganz versteh ich deine frage nicht,
aber meinst du z.b.
[mm] \integral_{a}^{b}{2x}dx [/mm]
also entweder
[mm] 2*\integral_{a}^{b}{x}dx=2*[0.5*x^2]_{a}^{b}=2*[0.5*b^2-0.5*a^2]=2*0.5*[b^2-a^2]=b^2-a^2 [/mm]
oder [mm] \integral_{a}^{b}{2x}dx=[x^2]_{a}^{b}=b^2-a^2 [/mm]

beides das gleiche ;-)

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]