www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integralrechnung
Integralrechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 13:30 So 17.01.2010
Autor: mausieux

Hallo zusammen. Wer kann mir bei folgender Aufgabe helfen?

Es sei f:[a,b] [mm] \to \IR, [/mm] a [mm] \le \delta \le [/mm] b und

[mm] f(x)=\begin{cases} 1,falls x=\delta & \mbox{} \mbox{ } \\ 0, & \mbox{sonst} \end{cases} [/mm]

Zeigen Sie, dass f Riemann - integrierbar ist und bestimmen Sie [mm] \integral_{a}^{b}{f(x) dx} [/mm]

Wie muss ich vorgehen?


        
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 So 17.01.2010
Autor: mausieux

Eine Funktion ist doch dann Riemann - integrierbar, wenn die Obersumme gleich der Untersumme ist, oder?

Bezug
                
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 So 17.01.2010
Autor: max3000

Das Integral ist natürlich 0.

Zeigen kannst du das mit der Unterlösung 0 und der Oberlösung

[mm] \psi(x)=\begin{cases} 0, &\mbox{für } a\le x\le\delta-\epsilon \mbox{ oder } \delta+\epsilon\le x\le b \\ \bruch{1}{\epsilon}x+1-\bruch{\delta}{\epsilon} &\mbox{für } \delta-\epsilon\le x\le\delta \\ -\bruch{1}{\epsilon}x+1+\bruch{\delta}{\epsilon} &\mbox{für } \delta\le\x\delta+\epsilon \end{cases} [/mm]

Das ist so eine Hütchenfunktion, die 1 bei [mm] \delta [/mm] ist und dann linear bis [mm] \delta-\epsilon [/mm] und [mm] \delta+\epsilon [/mm] auf 0 abfällt und dann 0 bleibt.

Diese kannst du jetzt mal integrieren und machst dann den Grenzübergang zu [mm] \epsilon\rightarrow0 [/mm] und dann hast du quasi das Integral von deiner ursprünglichen Funktion.

[mm] \psi [/mm] ist sicher Riemann integrierbar, da diese Funktion stetig ist.

Mit [mm] \|\psi-0\|\rightarrow0 [/mm] hast du dann die Riemann-Integrierbarkeit von f(x).

Schönen Gruß

Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]