www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Integralrechnung
Integralrechnung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Allgemeines
Status: (Frage) beantwortet Status 
Datum: 17:10 Sa 12.12.2009
Autor: freak900

Aufgabe
Hallo!

f: -x²+3x+5

1. Wenn ich die Funktion skizziere, weiß ich ja das -x² eine Parabel nach unten ist, und was bedeutet die +5 - heißt dass die Funktion um 5 Werte auf der Y-Achse nach oben verschoben ist?

wie zum Beispiel bei:

2-x² hier weiß ich dass "2" die oberste Grenze ist, wie kann es bei der oberen Funktion erklären?

2. Allgemein, welche Funktionen sollte man sich denn merken?;
außer x², -x², [mm] x^{3}, [/mm] - [mm] x^{3} [/mm]



Danke!

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Sa 12.12.2009
Autor: Tyskie84

Hallo,

> Hallo!
>  
> f: -x²+3x+5
>  
> 1. Wenn ich die Funktion skizziere, weiß ich ja das -x²
> eine Parabel nach unten ist, und was bedeutet die +5 -
> heißt dass die Funktion um 5 Werte auf der Y-Achse nach
> oben verschoben ist?
>  

Nein. Bringe f auf Normalform dann kannst du den Scheitelpunkt genau ablesen. Dann siehst du um wieviel einheiten die Parabel nach recht/links und nach oben/unten verschoben ist. man weiss nur das der x Wert hier 1,5 ist. Also 1,5 einheiten nach rechts.

> wie zum Beispiel bei:
>  
> 2-x² hier weiß ich dass "2" die oberste Grenze ist, wie
> kann es bei der oberen Funktion erklären?
>  

hier ist es ja [mm] -x^2+2 [/mm]
Also eine nach unten geöffnete Parabel um 2 Einheiten nach oben verschoben. Scheitelpunkt ist hier (0|2)

> 2. Allgemein, welche Funktionen sollte man sich denn
> merken?;
>  außer x², -x², [mm]x^{3},[/mm] - [mm]x^{3}[/mm]
>

Das ist schon mal ein guter Anfang. Wenn du allerdings weisst wie man auf die Normalform einer q.Funktion kommst dann erübrigt sich das auch meiner Ansicht. Wann eine Parabel gesreckt und wann gestaucht wird sollte man auch noch wissen. Aber du hast recht. Den groben verlauf sollte man schon von den "Standard"funktionen wissen.


>
>
> Danke!


PS. Was hat die Aufgabe mit Integralrechnung zu tun? Sollst du noch eine Fläche ausrechnen zu der gegebenen Funktion?
[hut] Gruß

Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Sa 12.12.2009
Autor: freak900


> Hallo,
>  
> > Hallo!
>  >  
> > f: -x²+3x+5
>  >  
> > 1. Wenn ich die Funktion skizziere, weiß ich ja das -x²
> > eine Parabel nach unten ist, und was bedeutet die +5 -
> > heißt dass die Funktion um 5 Werte auf der Y-Achse nach
> > oben verschoben ist?
>  >  
>
> Nein. Bringe f auf Normalform dann kannst du den
> Scheitelpunkt genau ablesen. Dann siehst du um wieviel
> einheiten die Parabel nach recht/links und nach oben/unten
> verschoben ist. man weiss nur das der x Wert hier 1,5 ist.
> Also 1,5 einheiten nach rechts.

Was meinst du mit Normalform?
Woher kommen die 1,5? Sorry bin momentan ein bisschen verwirrt.

>  > wie zum Beispiel bei:

>  >  
> > 2-x² hier weiß ich dass "2" die oberste Grenze ist, wie
> > kann es bei der oberen Funktion erklären?
>  >  
>
> hier ist es ja [mm]-x^2+2[/mm]
>   Also eine nach unten geöffnete Parabel um 2 Einheiten
> nach oben verschoben. Scheitelpunkt ist hier (0|2)
>  
> > 2. Allgemein, welche Funktionen sollte man sich denn
> > merken?;
>  >  außer x², -x², [mm]x^{3},[/mm] - [mm]x^{3}[/mm]
> >
>
> Das ist schon mal ein guter Anfang. Wenn du allerdings
> weisst wie man auf die Normalform einer q.Funktion kommst
> dann erübrigt sich das auch meiner Ansicht. Wann eine
> Parabel gesreckt und wann gestaucht wird sollte man auch
> noch wissen. Aber du hast recht. Den groben verlauf sollte
> man schon von den "Standard"funktionen wissen.
>  
>



> >
> >
> > Danke!
>
>
> PS. Was hat die Aufgabe mit Integralrechnung zu tun? Sollst
> du noch eine Fläche ausrechnen zu der gegebenen Funktion?
>  [hut] Gruß

Ja genau! Hätte vlt. wo anders besser hingepasst, sry.

Liebe Grüße

Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Sa 12.12.2009
Autor: Tyskie84

Hallo,


>  
> Was meinst du mit Normalform?
>  Woher kommen die 1,5? Sorry bin momentan ein bisschen
> verwirrt.
>  

Ok ich  hätte da vllt etwas genauer sein sollen. Ich meine die Normalform bei quadratischen Gleichungen. Also quadratische Ergänzung sagt dir ja was oder?

Hier mal ein []Link dazu. Schau dir das Beispiel an wie man den Scheitelpunkt einer quadratischen Gleichung berechnet. Dann erklärt dich denke ich mal die 1,5 ;-)





>
> Ja genau! Hätte vlt. wo anders besser hingepasst, sry.
>


Also doch keine Fläche berechnen? Ok ich werde das dann verschieben :-)


> Liebe Grüße


[hut] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]