www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integralrechnung
Integralrechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Beweis
Status: (Frage) beantwortet Status 
Datum: 20:55 Mi 19.01.2005
Autor: Moe007

Hallo,
ich hoffe es kann mir jemand bei diesem Beweis helfen. Ich weiß leider überhaupt nicht, wie ich bei dieser Aufgabe vorgehen soll. Ich bitte deshalb um Tipps.

Aufgabe:
Sei n  [mm] \in \IN. [/mm] Gebe für jedes  [mm] \varepsilon [/mm] > 0 Treppenfunktionen g,h : [0,1]  [mm] \to \IR [/mm] mit g  [mm] \le x^{n} \le [/mm] h und |  [mm] \integral_{0}^{1} [/mm] {h(x) dx} -  [mm] \integral_{0}^{1} [/mm] {g(x) dx} <  [mm] \varepsilon [/mm] an und berechne auf diese Weise   [mm] \integral_{0}^{1} [/mm] {  [mm] x^{n} [/mm] dx}.

Wie geht man hier am besten vor?

Danke. Moe007



        
Bezug
Integralrechnung: Anleitung
Status: (Antwort) fertig Status 
Datum: 00:49 Do 20.01.2005
Autor: Peter_Pein

Hi MoeBond, MoeJamesBond,

mir scheint fast, dass Dir der Begriff Treppenfunktion so recht nichts sagen will, deshalb kurz ein Bild zur Illustration:
[Dateianhang nicht öffentlich]

Es geht darum, die Funktion f (schwarz) durch unstetige, stufenförmige Funktionen g und h zu umgeben, dass für alle $x [mm] \in [/mm] [ 0, 1 ]$ gilt, was in der Aufgabe gefordert wurde. Dazu teilt man das Intervall [0,1] in diesem Fall am einfachsten in k gleich große Teilintervalle auf. Die untere Treppe hat in jedem dieser Teilintervalle den Wert $f(linke Grenze)$ und die obere entsprechend $f(rechte Grenze)$ (oben für vier Teilinterv. skizziert). Da diese Treppenfunktionen nun stückweise konstant sind, ist es einfach, eine Formel für den Flächeninhalt [mm] $F_{k}(Treppe)$ [/mm] unter ihnen in Abhängigkeit von k zu errechnen.

Dabei ist [mm] $F_{k}(g) \le \integral_{0}^{1} [/mm] {f(x) dx} [mm] \le F_{k}(h)$. [/mm]

wenn dann die Grenzwerte der beiden [mm] $F_{k}$ [/mm] für [mm] $k\rightarrow\infty$ [/mm] übereinstimmen, bleibt dem Wert des Integrals über f nichts anderes übrig, als ebenfalls diesen Wert anzunehmen.

Das muss von Dir jetzt nur noch etwas genauer formuliert und anschließend ausgerechnet werden [aetsch]

Viel Erfolg,
Peter


Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Integralrechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 18:02 Do 20.01.2005
Autor: Moe007

Hallo,
danke erstmal für die Hilfe.... leider bin ich so dumm, und versteh nicht ganz, was du mit f( linke Grenze) und f(rechte Grenze) meinst? Könntest du es mir bitte besser erläutern was du damit meinst?
Leider hab ich nach langem Rumprobieren immer noch kein  [mm] F_{k}(Treppe) [/mm] gefunden. Muss ich da jede einzelne Stufe addieren?

Danke für deine Hilfe.
Moe 007

Bezug
                        
Bezug
Integralrechnung: Intervallgrenzen und Summen
Status: (Antwort) fertig Status 
Datum: 23:37 Do 20.01.2005
Autor: Peter_Pein

Hi Moe,

mit $f(linke/rechte Grenze)$ meinte ich die Randpunkte des entsprechenden Teilintervalls (TI). Die untere Treppenfunktion mit k gleichgroßen TI hat im i-ten TI den konstanten Wert [mm]f(\bruch{i-1}{k})[/mm], in diesem Fall also [mm](\bruch{i-1}{k})^{2}[/mm]. Um den Flächeninhalt zwischen einer Stufe der unteren Treppe und der x-Achse zu berechnen, mußt Du die Breite jeder Stufe mit deren Höhe multiplizieren. Das ist mit [mm] $F_{k}$ [/mm] für die untere Treppe gemeint gewesen.

Ich hoffe, das hat zum Verständnis beigetragen (?)
Peter


Bezug
                                
Bezug
Integralrechnung: Teillsg (erst selbst probieren
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:08 Fr 21.01.2005
Autor: Peter_Pein

Ich führe es nur für die untere Treppe vor. Für die obere geht das analog, nur dass der Funktionswert des jeweils rechten Randpunktes die Höhe der Stufe angibt.

Wenn ich das Interval [0,1] in k gleichgroße Intervalle unterteile, liegen die Randpunkte dieser Intervalle bei [mm] $\bruch{i}{k}, 0\le [/mm] i [mm] \le [/mm] k$. Jedes Teilintervall hat die Länge [mm] $\bruch{1}{k}$ [/mm] (Breite jeder Stufe). Die Höhe ist, wie beschrieben [mm](\bruch{i-1}{k})^{2}[/mm]. Also ist die Gesamtfläche unter der unteren Treppe [mm]\underline{F_{k}}= \summe_{i=1}^{k}(\bruch{1}{k}*(\bruch{i-1}{k})^{2}))=\bruch{1}{k^{3}} \summe_{i=1}^{k}(i-1)^{2}=\bruch{1}{6*k^{3}}*(k*(k-1)*(2*k-1))[/mm](Induktion). Ausmultipliziert haben wir also [mm]\underline{F_{k}}= \bruch{1}{3}-\bruch{1}{2*k}+\bruch{1}{6*k^2}[/mm]. Bei der Grenzwertbildung [mm] $k\rightarrow\infty$ [/mm] bleibt offenbar nur [mm] $\bruch{1}{3}$ [/mm] übrig.
Analog errechnet man für die obere Treppe den Flächeninhalt [mm]\overline{F_{k}}=\bruch{1}{3}+\bruch{1}{2*k}+\bruch{1}{6*k^2}[/mm], indem man entweder statt über [mm] $(i-1)^{2}$ [/mm] über [mm] $i^{2}$ [/mm] summiert, oder pfiffig ist, und einfach den fehlenden Summanden [mm] $\bruch{k^{2}}{k^{3}}$ [/mm] zu [mm] $\underline{F_{k}}$ [/mm] addiert. Das funktioniert aber nicht bei jedem f so einfach.

Viel Erfolg,
Peter

P.S.: Ich hoffe, nicht viele Tippfeler :-) eingebaut zu haben

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]