www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integrale vereinfachen
Integrale vereinfachen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Di 19.10.2010
Autor: abcd

Aufgabe
Vereinfache erst, berechne dann.

[mm] d)\integral_{-1}^{2}{(2-\bruch{1}{2}x²) dx}-\integral_{1}^{2}{(2-\bruch{1}{2}x²)dx} [/mm]

Hallo,

mir ist die additive Regel schon bekannt, um Integrale zu vereinfachen, diese gilt jedoch nur, wenn man zwei Integrale addiert (sagt ja auch der Name).
Wie verfahre ich denn, wenn sie wie in der obigen Aufgabe subtrahiert werden?

Ist es richtig, dass ich aus dem negativen Integral erst einen Positiven machen muss (i.e. die Grenzen vertausche) und dann die additive Regel anwenden kann?

Dann müsste da ja folgender Integral rauskommen:
[mm] \integral_{-1}^{1}{}{(2-\bruch{1}{2}x²)dx} [/mm]

lg, abcd

        
Bezug
Integrale vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Di 19.10.2010
Autor: Sax

Hi,

> Vereinfache erst, berechne dann.
>  
> [mm]d)\integral_{-1}^{2}{(2-\bruch{1}{2}x²) dx}-\integral_{1}^{2}{(2-\bruch{1}{2}x²)dx}[/mm]
>  

Ich gehe mal davon aus, dass das mit den Integrationsgrenzen ein Tippfehler ist. Die müssen nämlich gleich sein, wenn man die Additionsregel anwenden will.
Wenn es kein Tippfehler ist, dann muss das erste Integral zerlegt werden : [mm] \integral_{-1}^{2} [/mm]  =  [mm] \integral_{-1}^{1} [/mm] + [mm] \integral_{1}^{2} [/mm] .

> Hallo,
>  
> mir ist die additive Regel schon bekannt, um Integrale zu
> vereinfachen, diese gilt jedoch nur, wenn man zwei
> Integrale addiert (sagt ja auch der Name).
>  Wie verfahre ich denn, wenn sie wie in der obigen Aufgabe
> subtrahiert werden?
>  

Genau so !
[mm] \integral_{a}^{b}{f(x) dx} [/mm] - [mm] \integral_{a}^{b}{g(x) dx} [/mm]  =  [mm] \integral_{a}^{b}{(f(x) - g(x)) dx} [/mm]
Das liegt daran, dass [mm] c*\integral_{a}^{b}{f(x) dx} [/mm] = [mm] \integral_{a}^{b}{c*f(x) dx} [/mm] ist, insbesondere für  c = -1.

> Ist es richtig, dass ich aus dem negativen Integral erst
> einen Positiven machen muss (i.e. die Grenzen vertausche)
> und dann die additive Regel anwenden kann?
>  

Nein. Siehe die Bemerkung oben.

> Dann müsste da ja folgender Integral rauskommen:
>  [mm]\integral_{-1}^{1}{}{(2-\bruch{1}{2}x²)dx}[/mm]
>  
> lg, abcd

Gruß Sax.

Bezug
                
Bezug
Integrale vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Di 19.10.2010
Autor: abcd

Hallo Sax,

Ich bin mir noch nicht ganz so sicher, welcher Integral müsste am Ende dann rauskommen?
So, wie ich dich verstanden habe, doch auch der
[mm] \integral_{-1}^{1}, [/mm] oder?
Warum kann ich meinen Weg denn nicht anwenden, wenn ich dasselbe Ergebgnis bekomme?


Bezug
                        
Bezug
Integrale vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Di 19.10.2010
Autor: ONeill

Hi!
> Dann müsste da ja folgender Integral rauskommen:
>  [mm]\integral_{-1}^{1}{}{(2-\bruch{1}{2}x²)dx}[/mm]

[ok] sehe ich genauso.

Gruß Christian

Bezug
                        
Bezug
Integrale vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Di 19.10.2010
Autor: Sax

Hi,
du hast völlig recht, ich habe bei meiner Antwort nicht darauf geachtet, dass die Integrandenfunktionen identisch sind.

Sorry, Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]