www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integrale berechnen
Integrale berechnen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale berechnen: Idee
Status: (Frage) beantwortet Status 
Datum: 18:57 Do 10.02.2011
Autor: dimi727

Aufgabe
Berechnen Sie im Falle der Existenz die folgenden Integrale:

a) [mm] \integral{\bruch{e^{3x}+3}{e^x+1} dx} [/mm]

b) [mm] \integral_{-\pi}^{\pi}{sin(sin(x)) dx} [/mm]

c) [mm] \integral_{0}^{\infty}{\bruch{x}{\wurzel{1+x^3}} dx} [/mm]

Guten Abend allerseits :)

Ich weiß leider garnicht, wie ich bei den 3 oben genannten Integralen vorgehen soll.

Bei a) war meine Idee es mit partieller Integration zu versuchen.
Bei b) und c) vermute ich, dass die Integrale nicht existieren, aber ich weiß nicht wie ich das beweisen soll.
Bei b) wüsste ich nichtmal, wie ich sin(sinx) auflösen könnte, (Substitution?) und bei c) Landet man mit Substitution in einer Sackgasse.

Hoffe einer kann mir helfen.

        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Do 10.02.2011
Autor: abakus


> Berechnen Sie im Falle der Existenz die folgenden
> Integrale:
>  
> a) [mm]\integral{\bruch{e^{3x}+3}{e^x+1} dx}[/mm]
>  
> b) [mm]\integral_{-\pi}^{\pi}{sin(sin(x)) dx}[/mm]
>  
> c) [mm]\integral_{0}^{\infty}{\bruch{x}{\wurzel{1+x^3}} dx}[/mm]
>  
> Guten Abend allerseits :)
>  
> Ich weiß leider garnicht, wie ich bei den 3 oben genannten
> Integralen vorgehen soll.
>  
> Bei a) war meine Idee es mit partieller Integration zu
> versuchen.
>  Bei b) und c) vermute ich, dass die Integrale nicht
> existieren, aber ich weiß nicht wie ich das beweisen
> soll.
>  Bei b) wüsste ich nichtmal, wie ich sin(sinx) auflösen
> könnte, (Substitution?) und bei c) Landet man mit
> Substitution in einer Sackgasse.
>  
> Hoffe einer kann mir helfen.

Hallo,
für Funktionen, die punktsymmetrisch zum Ursprung sind, ist das Integral von -a bis +a immer Null.
Den Term von Aufgabe a) würde ich kunstvoll zerlegen, z.B.
[mm] \bruch{e^{3x}+3}{e^x+1}=\bruch{e^{3x}+e^{2x}-e^{2x}+3}{e^x+1}=e^{2x}+\bruch{-e^{2x}+3}{e^x+1} [/mm]
Der vordere Teil dürfte zu integrieren sein, und im Zähler des hinteren Teils kann man [mm] e^x [/mm] subtrahieren und gleich wieder addieren.
Gruß Abakus

Bezug
                
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 Do 10.02.2011
Autor: dimi727

Was meinst du mit [mm] e^x [/mm] subtrahieren und gleich wieder addieren?
$ [mm] \bruch{e^{3x}+3}{e^x+1}=\bruch{e^{3x}+e^{2x}-e^{2x}+3}{e^x+1}=e^{2x}+\bruch{-e^{2x}+3}{e^x+1} [/mm] $

Wie kommst du hier auf den letzten Schritt? Wo ist das [mm] e^{3x} [/mm] hin? Kann es nicht ganz nachvollziehen,was du da machst. Das mit der produktiven Null verstehe ich.


zu b)  Ok, das leuchtet ein,aber integrieren oder damit irgendwie weiterarbeiten kann man hier an der Stelle nichtmehr?

und zu c) keine Idee?

Danke für die Mühe!

Bezug
                        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Do 10.02.2011
Autor: MathePower

Hallo dimi727,

> Was meinst du mit [mm]e^x[/mm] subtrahieren und gleich wieder
> addieren?
>  
> [mm]\bruch{e^{3x}+3}{e^x+1}=\bruch{e^{3x}+e^{2x}-e^{2x}+3}{e^x+1}=e^{2x}+\bruch{-e^{2x}+3}{e^x+1}[/mm]
>  
> Wie kommst du hier auf den letzten Schritt? Wo ist das
> [mm]e^{3x}[/mm] hin? Kann es nicht ganz nachvollziehen,was du da
> machst. Das mit der produktiven Null verstehe ich.


Ok, dann die Umformung in Zwischenschritten:

[mm]\bruch{e^{3x}+e^{2x}-e^{2x}+3}{e^x+1}=\bruch{e^{2x+x}+e^{2x}-e^{2x}+3}{e^{x}+1}=\bruch{e^{2x}*\left(e^{x}+1\right)-e^{2x}+3}{e^{x}+1}[/mm]
[mm]=\bruch{e^{2x}*\left(e^{x}+1\right)}{e^{x}+1}+\bruch{-e^{2x}+3}{e^{x}+1}=e^{2x}+\bruch{-e^{2x}+3}{e^{x}+1}[/mm]


>  
>
> zu b)  Ok, das leuchtet ein,aber integrieren oder damit
> irgendwie weiterarbeiten kann man hier an der Stelle
> nichtmehr?


Nein.


>  
> und zu c) keine Idee?
>  
> Danke für die Mühe!


Gruss
MathePower

Bezug
                                
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Do 10.02.2011
Autor: dimi727

ok mir ist hier die Potenzregel entfallen : e^2x = [mm] e^x [/mm] * [mm] e^x. [/mm]

Alles klar, nur was soll jetzt am hinteren Term einfacher sein?

Du meintest subtrahieren und gleich wieder addieren, ist dashier gemeint :

[mm] \bruch{e^{2x} - e^x + e^x +3 }{e^x+1} [/mm]

Bezug
                                        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Do 10.02.2011
Autor: MathePower

Hallo dimi727,

> ok mir ist hier die Potenzregel entfallen : e^2x = [mm]e^x[/mm] *
> [mm]e^x.[/mm]
>  
> Alles klar, nur was soll jetzt am hinteren Term einfacher
> sein?
>  
> Du meintest subtrahieren und gleich wieder addieren, ist
> dashier gemeint :
>  
> [mm]\bruch{e^{2x} - e^x + e^x +3 }{e^x+1}[/mm]  


Das muss doch hier lauten:

[mm]\bruch{\blue{-}e^{2x} - e^x + e^x +3 }{e^x+1}[/mm]

Den kannst Du auch mit so einer kunstvollen Umformung bearbeiten.


Gruss
MathePower

Bezug
                                                
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Do 10.02.2011
Autor: dimi727

Ja genau, wie wir es vorher besprochen haben.

Also wie komme ich dann von dem kunstvoll Umgeformten zum Integral? Also ich weiß nicht,was dieses Umformen gerad leichter gemacht hat? :/

[mm] \integral{e^{2x}+\bruch{-e^{2x}+3}{e^x+1} dx} [/mm]

Bezug
                                                        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Do 10.02.2011
Autor: abakus


> Ja genau, wie wir es vorher besprochen haben.
>  
> Also wie komme ich dann von dem kunstvoll Umgeformten zum
> Integral? Also ich weiß nicht,was dieses Umformen gerad
> leichter gemacht hat? :/
>  
> [mm]\integral{e^{2x}+\bruch{-e^{2x}+3}{e^x+1} dx}[/mm]  

[mm] \bruch{-e^{2x}+3}{e^x+1}=\bruch{-e^{2x}-e^x+e^x+3}{e^x+1}=-e^x+\bruch{e^x+3}{e^x+1}=-e^x+1+\bruch{2}{e^x+1} [/mm]

Bezug
                                                                
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Do 10.02.2011
Autor: dimi727

Ok, vielen Dank, jetzt siehts doch gleich viel angenehmer aus :)

und zu c) hat hier keiner eine Idee? :/

Bezug
                                                                        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Do 10.02.2011
Autor: reverend

Hallo Dimi,

fangen wir mal so an: man sollte besser nicht versuchen, hier die Stammfunktion zu bilden. Die ist gelinde gesagt []unübersichtlich und manuell kaum zu finden.

Du brauchst also einen anderen Weg. Ein paar Funktionswerte helfen vielleicht, erst einmal eine Idee davon zu bekommen, wie der Graph der zu integrierenden Funktion eigentlich verläuft.

Grüße
reverend


Bezug
        
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:49 Do 10.02.2011
Autor: dimi727

Ja gut habs mir mal plotten lassen,sieht stark unstetig aus, aber in [mm] (0,+\infty) [/mm] scheints sehr stark gegen 0 zu gehen.

Und nun? Darf sowas etwa nicht integriert werden oder wie soll ich da irgendwas zeigen?

Bezug
                
Bezug
Integrale berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:52 Do 10.02.2011
Autor: dimi727

Ok, habs etwas falsch eingegeben,ändert aber nichts dadran,dass die FUnktion gegen 0 geht und eigentlich fast wie eine Wurzelfunktion aussieht? Was nun? Was soll mir das jetzt über die sehr unmögliche Integrierbarkeit sagen?^^

Bezug
                        
Bezug
Integrale berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:11 Fr 11.02.2011
Autor: reverend

Hallo Dimi,

ich wollte gerade eine andere Abschätzung vorschlagen, aber Teufels Vorschlag ist besser. Mach da mal weiter.

Nur zur Kenntnis - meine wäre so gewesen:

für x>1 ist [mm] \bruch{x}{\wurzel{x^3}}>\bruch{x}{\wurzel{1+x^3}}>\bruch{x}{2\wurzel{x^3}}>0 [/mm]

Und da für [mm] 0\le x\le{1} [/mm] auch [mm] \bruch{x}{\wurzel{1+x^3}}>0 [/mm] gilt, ist man dann genauso schnell fertig. Teufels Abschätzung ist aber eleganter.

Grüße
reverend


Bezug
                
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Fr 11.02.2011
Autor: Teufel

Hi!

Fang mal so an:

[mm] \integral_{0}^{\infty}{\frac{x}{\sqrt{1+x^3}} dx}\ge\integral_{1}^{\infty}{\frac{x}{\sqrt{1+x^3}} dx}\ge\integral_{1}^{\infty}{\frac{x}{\sqrt{x^3+x^3}} dx}. [/mm]

Das letzte Integral kannst du berechnen.

Bezug
                        
Bezug
Integrale berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:36 Fr 11.02.2011
Autor: dimi727

Vielen Dank an alle Beteiligten, hat mir alles sehr geholfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]