www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integrale berechnen
Integrale berechnen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale berechnen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:49 Sa 06.02.2010
Autor: SuperHomer

Aufgabe
a) [mm] \integral_{0}^{1}{\bruch{cos(x)}{sin(x)+1} dx} [/mm]

b) [mm] \integral_{0}^{1}{\bruch{3*x^{2}+8*x+10}{x^{3}+4*x^{2}+10*x+17} dx} [/mm]

bei der a) habe ich das ergebnis von einem kumpel gesagt bekommen, aber ich weiß nicht wie ich auf das ergebnis komme

Ergebnis = ln(1+sin(x)) eingeschränkt auf 0 bis [mm] \bruch{\pi}{4} [/mm] = [mm] ln(\bruch{2+\wurzel{2}}{2}) [/mm]

wie komme ich bei der aufgabe auf die Stammfunktion?


bei der b) habe ich auch keine idee... :-(
habe erst gedacht ich muss die Funktionen getrennt voneinander betrachten, allerdings bin ich da auf nichts gescheites gekommen.

vielen dank für eure antwort

Ich habe die frage sonst nirgendwo gepostet

        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Sa 06.02.2010
Autor: fencheltee


> a) [mm]\integral_{0}^{1}{\bruch{cos(x)}{sin(x)+1} dx}[/mm]
>  
> b)
> [mm]\integral_{0}^{1}{\bruch{3*x^{2}+8*x+10}{x^{3}+4*x^{2}+10*x+17} dx}[/mm]
>  
> bei der a) habe ich das ergebnis von einem kumpel gesagt
> bekommen, aber ich weiß nicht wie ich auf das ergebnis
> komme
>  
> Ergebnis = ln(1+sin(x)) eingeschränkt auf 0 bis
> [mm]\bruch{\pi}{4}[/mm] = [mm]ln(\bruch{2+\wurzel{2}}{2})[/mm]
>  
> wie komme ich bei der aufgabe auf die Stammfunktion?

substituiere bei der a) sin(x)=z

>  
>
> bei der b) habe ich auch keine idee... :-(
>  habe erst gedacht ich muss die Funktionen getrennt
> voneinander betrachten, allerdings bin ich da auf nichts
> gescheites gekommen.

beachte, dass der zähler die ableitung des nenners ist, dort gilt:
[mm] \int\frac{f'(x)}{f(x)}=ln|f(x)|+c [/mm]

>  
> vielen dank für eure antwort
>  
> Ich habe die frage sonst nirgendwo gepostet

gruß tee

Bezug
        
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 So 07.02.2010
Autor: SuperHomer

Aufgabe
c) [mm] \integral_{-\bruch{1}{\wurzel{2}}}^{\bruch{1}{\wurzel{2}}}{\bruch{1}{\wurzel{1-x^{2}}} dx} [/mm]

Hallo hier muss ich schonwieder eine aufgabe posten, da ich nicht weiter komme.

Ich denke ich muss substituieren und zwar t = [mm] \wurzel{1-x^{2}}. [/mm]

dann erhalte für t' = [mm] \bruch{x}{\wurzel{1-x^{2}}}. [/mm]
soweit hoffe ich ist es richtig. nur jetzt habe ich keine ahnung wie ich da weiter komme. könnte mir jemand helfen, vielleicht sogar die Substitution an der aufgabe erklären, da ich sie anscheinend nicht richtig verstanden habe.

Bezug
                
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 So 07.02.2010
Autor: Sierra

Hallo,

der Trick hier ist, dass gilt: [mm] sin^{2}(x) [/mm] + [mm] cos^{2}(x)=1 [/mm]

das müsste dir weiterhelfen

Gruß Sierra

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]