www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integrale Aufteilen
Integrale Aufteilen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale Aufteilen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 Mo 20.10.2014
Autor: Mino1337

Aufgabe
Berechne die Flächen:

[mm] \integral_{-1}^{1}{f(x) 2x+1 dx} [/mm]

Hallo,

Hier ein Integral welches man Aufteilen muss weils über Null geht und die Fläche gefragt ist. (soviel hab ich schonmal gewusst) =D

Ich habe nun versucht es so Aufzuteilen:

[mm] \integral_{-1}^{1}{f(x) 2x+1 dx} [/mm] = [mm] x^{2}+x [/mm]
[mm] \integral_{0}^{1}=(1+1)-(0+0)=2 [/mm]
[mm] \integral_{-1}^{0}=(-1-1)-(0+0)=-2 [/mm]
[mm] \integral_{0}^{1}+\integral_{-1}^{0}=2-(-2)=4 [/mm] ...

Das ist Falsch da kommt nämlich [mm] \bruch{10}{4} [/mm] bei raus ...

ich weiss nur nich wieso ...

In der Aufgabe wurde es ähnlich gerechnet wie ich es getan habe nur das statt Null der Bruch: [mm] \bruch{-1}{2} [/mm] benutzt wurde ...

Das verstehe ich auch nicht denn wenn ich [mm] \integral_{\bruch{-1}{2}}^{1} [/mm] Integriere dann doch auch über Null ... Könnte mich jemand aufklären bitte ?

Dankeschööön =D



        
Bezug
Integrale Aufteilen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Mo 20.10.2014
Autor: abakus


> Berechne die Flächen:

>

> [mm]\integral_{-1}^{1}{f(x) 2x+1 dx}[/mm]
> Hallo,

>

> Hier ein Integral welches man Aufteilen muss weils über
> Null geht und die Fläche gefragt ist. (soviel hab ich
> schonmal gewusst) =D

Hallo,
das klingt sehr konfus und ist fehlerhaft aufgeschrieben.
Die Aufgabe lautet vermutlich:
Berechnen Sie die Größe der Flächen zwischen der x-Achse und dem Graphen der Funktion f(x)=2x+1 im Intervall von -1 bis 1?
Die Funktion hat in diesem Bereich sowohl positive als auch negative Funktionswerte.
Der Wechsel zwischen positiven und negativen Funktionswerten findet an der Nullstelle der Funktion statt. Da Flächeninhalte grundsätzlich nicht negativ sind (du hast sicher kein Zimmer mit minus 20 m² Fläche), muss im Falle negativer Integrale der Teilflächeninhalt durch den Betrag des Integrals ausgedrückt werden (und bei positiven Integralen schadet die Verwendung des Betrags zur Flächenberechnung auch nicht.
Es gilt also [mm]A=A_1+A_2=|\integral_{-1}^{Nullstelle}{(2x+1)dx}|+ |\integral_{Nullstelle}^{1}{(2x+1)dx}| [/mm]
Gruß Abakus

>

> Ich habe nun versucht es so Aufzuteilen:

>

> [mm]\integral_{-1}^{1}{f(x) 2x+1 dx}[/mm] = [mm]x^{2}+x[/mm]
> [mm]\integral_{0}^{1}=(1+1)-(0+0)=2[/mm]
> [mm]\integral_{-1}^{0}=(-1-1)-(0+0)=-2[/mm]
> [mm]\integral_{0}^{1}+\integral_{-1}^{0}=2-(-2)=4[/mm] ...

>

> Das ist Falsch da kommt nämlich [mm]\bruch{10}{4}[/mm] bei raus ...

>

> ich weiss nur nich wieso ...

>

> In der Aufgabe wurde es ähnlich gerechnet wie ich es getan
> habe nur das statt Null der Bruch: [mm]\bruch{-1}{2}[/mm] benutzt
> wurde ...

>

> Das verstehe ich auch nicht denn wenn ich
> [mm]\integral_{\bruch{-1}{2}}^{1}[/mm] Integriere dann doch auch
> über Null ... Könnte mich jemand aufklären bitte ?

>

> Dankeschööön =D

>
>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]