www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integrale
Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Do 27.04.2006
Autor: SirBigMac

Aufgabe
Aufgabe 1. a) Beweisen Sie, daß die Funktion f:[0,1] [mm] \to \IR [/mm] mit
[mm] f(x)=\begin{cases} 1, & \mbox{für } x \in \IQ \mbox{ } \\ 0, & \mbox{für } x \not\in\IQ \mbox{ } \end{cases} [/mm]
auf [0,1] nicht integrierbar ist.

b) Ist die Funktion
[mm] f(x)=\begin{cases} 1/x, & \mbox{für } x \in (0,1]\mbox{ } \\ 0, & \mbox{für } x =0\mbox{} \end{cases} [/mm]
integrierbar?

Hallo!

Wir haben diese Woche mit dem Riemann-Integral angefangen, nur leider versteh ich davon (fast) gar nichts. Wie zeigt man überhaupt, dass eine Funktion nicht integrierbar ist? Macht man das mit der [mm] \varepsilon [/mm] - [mm] \delta [/mm] -Definition? Die hab ich nämlich nicht verstanden... :-(

Kann mir da jemand helfen?

Lg SirBigMac

        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Do 27.04.2006
Autor: MatthiasKr

Hallo Bigmac,

> Aufgabe 1. a) Beweisen Sie, daß die Funktion f:[0,1] [mm]\to \IR[/mm]
> mit
>  [mm]f(x)=\begin{cases} 1, & \mbox{für } x \in \IQ \mbox{ } \\ 0, & \mbox{für } x \not\in\IQ \mbox{ } \end{cases}[/mm]
>  
>  auf [0,1] nicht integrierbar ist.

Ich denke, ihr sollt hier mit ober- und untersummen argumentieren. Überlege mal: du zerlegst das einheitsintervall in beliebig viele und kleine teilintervalle. wie sieht jeweils der maximale und minimale funktionswert pro teilintervall aus? und was bedeutet das für ober- und untersumme?

> b) Ist die Funktion
>  [mm]f(x)=\begin{cases} 1/x, & \mbox{für } x \in (0,1]\mbox{ } \\ 0, & \mbox{für } x =0\mbox{} \end{cases}[/mm]
>  
> integrierbar?

Hier würde ich auch konkret mit untersummen rechnen und zeigen dass diese für eine bestimmte zerlegung des intervalls gegen unendlich gehen. EIne Zerlegung wäre zB. [mm] $a_i=\frac{i}{N}, [/mm] i=0,...,N$. Du kannst jetzt für diese zerlegung die untersumme berechnen und mit $N$ gegen unendlich gehen.

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]