www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integralberechnung Problem
Integralberechnung Problem < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 So 22.02.2009
Autor: sp1nnaker

Aufgabe
[mm] \integral{\wurzel{\bruch{x}{x-1}}dx} [/mm]

Hallo,
ich habe ein Problem mit dem Berechnen von diesem Integral. Wäre nett wenn mir jmd einen Tipp geben könnte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralberechnung Problem: Ergebnis per Online-Tool
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 So 22.02.2009
Autor: Loddar

Hallo sp1nnaker,

[willkommenmr] !!


Ein rechter Ansatz fällt mir gerade auch nicht ein. Aber es kommt am Ende heraus:

[Dateianhang nicht öffentlich]


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Integralberechnung Problem: vereinfachen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:19 So 22.02.2009
Autor: reverend

Hallo sp1nnaker, hallo Loddar,

das kann man allerdings noch vereinfachn. []Wolfram Integrator gibt ja manchmal krauses Zeug aus:

[mm] \int{\wurzel{\bruch{x}{x-1}}\ dx}=\wurzel{x}\wurzel{x-1}+\ln{(\wurzel{x}+\wurzel{x-1})} [/mm]

Einen Ansatz dafür sehe ich aber auch noch nicht. Partialbruchzerlegung? Aber wieso? Die ursprüngliche Form legt das doch nicht nahe.

Grüße,
reverend

Bezug
        
Bezug
Integralberechnung Problem: The hard way...
Status: (Antwort) fertig Status 
Datum: 12:53 So 22.02.2009
Autor: reverend

Hallo sp1nnaker,

die brutale Methode geht so:

Substituiere [mm] u=\wurzel{\bruch{x}{x-1}} [/mm]

(Kontroll-Zwischenergebnis: [mm] \int{-\bruch{2u^2}{(u^2-1)^2}\ du} [/mm] )

Mach eine Partialbruchzerlegung. (Kontrollergebnis: alle vier Koeffizienten sind [mm] \pm\bruch{1}{2} [/mm] )

Dann einzeln integrieren und resubstituieren. Schwierig ist das spätere Zusammenfassen, um auf die schon bekannte Lösung

[mm] \int{\wurzel{\bruch{x}{x-1}}\ dx}=\wurzel{x}\wurzel{x-1}+\ln{(\wurzel{x}+\wurzel{x-1})} [/mm]

zu kommen, aber da Du weißt, wo Du hin willst, wird es schon klappen.

Eine elegantere Lösung habe ich noch nicht gefunden. Vielleicht hat ja jemand anders eine Idee?

Grüße,
reverend

Bezug
                
Bezug
Integralberechnung Problem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Mi 25.02.2009
Autor: sp1nnaker

Okay, danke für eure Antworten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]