www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Integralber. Exponentialfu.
Integralber. Exponentialfu. < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralber. Exponentialfu.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:05 Di 11.03.2008
Autor: Einstein_1977

Aufgabe
Aufgabe:
f(x) = (x+1) / [mm] e^x; [/mm]  g(x) = [mm] (x+3)/e^x [/mm]

a) Zeichne Gf und Gg im Bereich [-4;4]

b) Berechne den Inhalt der Fläche, welche von der x-Achse, der Geraden x = t (t > -1) und den beiden Graphen begrenzt ist. Was ergibt sich für t --> [mm] +\infty [/mm]

Ich haben die Kurvendiskussion soweit durchgeführt (meine Hochpunkte, Wendepunkte usw. berechnet) und die beiden Graphen gezeichnet. Aber ich komme mit der Flächenberechnung nicht zurecht. Meiner Meinung nach kann ich doch ein bestimmtes Integral erstellen mit:

[mm] \integral_{-1}^{4}{g(x)-f(x) dx} [/mm] =
[mm] \integral_{-1}^{4}{(2e^{-x}) dx} [/mm]

Nach dem Integrieren [mm] -2e^{-x} [/mm]  erhalte ich als Fläche = 5,39

Stimmt meine Lösung oder habe ich die Aufgabe total falsch verstanden? Und was soll ich eigentlich bei t--> [mm] +\infty [/mm] machen?

Bitte um schnelle Hilfe...

:-)

        
Bezug
Integralber. Exponentialfu.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Di 11.03.2008
Autor: Steffi21

Hallo,

ich gebe dir erst mal ein Bild mit:

[Dateianhang nicht öffentlich]

ich habe in der Zeichnung t=2 gewählt, die untere Grenze ist die Nullstelle von g(x), die obere Grenze ist dein Parameter t

[mm] \integral_{-3}^{t}{\bruch{x+3}{e^{x}}-\bruch{x+1}{e^{x}} dx} [/mm]

davon subtrahierst du die Fläche, die zwischen x=-3 und der Funktion g(x) im 3. Quadranten liegt,

[mm] \integral_{-3}^{-1}{0-\bruch{x+1}{e^{x}} dx} [/mm]

die Fläche ist von deinem Parameter t abhängig, der geht gegen unendlich,
(Minimum, Maximum, Wendepunkt sind hier nicht gefragt, kannst du natürlich berechnen)
Steffi



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]