www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral zu 1/(1+cos^2)
Integral zu 1/(1+cos^2) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral zu 1/(1+cos^2): Erbitte Tipps
Status: (Frage) beantwortet Status 
Datum: 13:59 Di 11.12.2012
Autor: hurra_mathe

Ich moechte folgendes Integral loesen:
[mm] \integral_{0}^{2\pi}\bruch{cos(\alpha)^2}{1+(cos(\alpha)^2-1)cos(\theta)^2}d\theta [/mm]
mit [mm] \alpha \in \{0,\bruch{\pi}{2}\} [/mm] -- allerdings wird nur ueber [mm] \theta [/mm] integriert, [mm] cos(\alpha)^2 [/mm] ist also im Sinne der Integration eine Konstante.
Ich weiss nun aus einer numerischen integration, dass die Loesung
[mm] 2\pi cos(\alpha) [/mm]
lautet.
Leider bin ich noch nicht analytisch auf dieses Ergebnis gekommen. In seiner Einfachheit muesste es doch moeglich sein, dort anzukommen - oder ist dies ein Trugschluss?
Koennte mir jemand eine Richtung aufzeigen, bitte? Eine sinnvolle Substitution, oder einen anderen Ansatz?
Vielen Dank!

PS
#cross-posts: Ich wollte diese Frage auch im Mathematica-Forum stellen (unter anderem habe ich Mathematica genutzt, um das Integral numerisch zu loesen). Allerdings ist meine Frage dort bis jetzt nicht freigeschaltet worden. Also:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Integral zu 1/(1+cos^2): Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Di 11.12.2012
Autor: MathePower

Hallo hurra_mathe,


[willkommenmr]


> Ich moechte folgendes Integral loesen:
>  
> [mm]\integral_{0}^{2\pi}\bruch{cos(\alpha)^2}{1+(cos(\alpha)^2-1)cos(\theta)^2}d\theta[/mm]
>  mit [mm]\alpha \in \{0,\bruch{\pi}{2}\}[/mm] -- allerdings wird nur
> ueber [mm]\theta[/mm] integriert, [mm]cos(\alpha)^2[/mm] ist also im Sinne
> der Integration eine Konstante.
> Ich weiss nun aus einer numerischen integration, dass die
> Loesung
> [mm]2\pi cos(\alpha)[/mm]
>  lautet.
>  Leider bin ich noch nicht analytisch auf dieses Ergebnis
> gekommen. In seiner Einfachheit muesste es doch moeglich
> sein, dort anzukommen - oder ist dies ein Trugschluss?
>  Koennte mir jemand eine Richtung aufzeigen, bitte? Eine
> sinnvolle Substitution, oder einen anderen Ansatz?


Das Integral kann mit dem Residuensatz zu gelöst werden.


>  Vielen Dank!
>  
> PS
>  #cross-posts: Ich wollte diese Frage auch im
> Mathematica-Forum stellen (unter anderem habe ich
> Mathematica genutzt, um das Integral numerisch zu loesen).
> Allerdings ist meine Frage dort bis jetzt nicht
> freigeschaltet worden. Also:
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]