www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integral von Sinus
Integral von Sinus < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral von Sinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Sa 25.03.2006
Autor: Professor

Hallo Leute,

habe folgende Aufgabe nun schon fünf bis sechs mal gerechnet und immer wieder komme ich auf ein falsches Ergebnis.

Es würde mich freuen, wenn mir einer von euch die Augen öffnen könnte.

Sei R := [mm] [0,\bruch{\pi}{2}] \times [0,\bruch{\pi}{2}] [/mm]

Berechnen sie das Integral

[mm] \integral_{R}^{}{sin (x - y) dxdy} [/mm]

Mein Ansatz:

[mm] \integral_{0}^{\bruch{\pi}{2}}{ \integral_{0}^{\bruch{\pi}{2}} sin (x- y) dx dy} [/mm]

[mm] \integral_{0}^{\bruch{\pi}{2}} [/mm] sin (x- y) dx = - cos [mm] (\bruch{\pi}{2} [/mm] - y) - cos y

- cos [mm] (\bruch{\pi}{2} [/mm] - y) - cos y = -1 * (0 * cos y + 1 * sin y) - cos y

-1 * (0 * cos y + 1 * sin y) - cos y = - sin y - cos y

[mm] \integral_{0}^{\bruch{\pi}{2}} [/mm] - sin y - cos y dy = 0 - 1 - (1 - 0)

0 - 1 - (1 - 0) = -2

Die richtige Lösung sollte jedoch 0 sein.

LG

Prof.


        
Bezug
Integral von Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Sa 25.03.2006
Autor: felixf

Hallo Prof!

> habe folgende Aufgabe nun schon fünf bis sechs mal
> gerechnet und immer wieder komme ich auf ein falsches
> Ergebnis.
>  
> Es würde mich freuen, wenn mir einer von euch die Augen
> öffnen könnte.
>  
> Sei R := [mm][0,\bruch{\pi}{2}] \times [0,\bruch{\pi}{2}][/mm]
>  
> Berechnen sie das Integral
>  
> [mm]\integral_{R}^{}{sin (x - y) dxdy}[/mm]
>  
> Mein Ansatz:
>  
> [mm]\integral_{0}^{\bruch{\pi}{2}}{ \integral_{0}^{\bruch{\pi}{2}} sin (x- y) dx dy}[/mm]
>  
> [mm]\integral_{0}^{\bruch{\pi}{2}}[/mm] sin (x- y) dx = - cos
> [mm](\bruch{\pi}{2}[/mm] - y) - cos y

Vorsicht, hier hast du einen Vorzeichenfehler gemacht: hinten muss es $+ [mm] \cos [/mm] y$ heissen und nicht $- [mm] \cos [/mm] y$! Wenn du das aenderst muesste auch $0$ rauskommen (wenn ich in deinen weiteren Rechnungen nix uebersehen hab).

LG Felix


Bezug
                
Bezug
Integral von Sinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Sa 25.03.2006
Autor: Professor

Hallo,

SORRY, dass ich mich so dumm anstelle, aber irgendwie sitze ich auf der Leitung.

Wieso muß es hinten + cos y heißen?

- cos [mm] (\bruch{\pi}{2} [/mm] - y) - (- cos (- y)) = - cos [mm] (\bruch{\pi}{2} [/mm] - y) - cos y

Danke schon mal für die Hilfe.

Gruß

Prof.


Bezug
                        
Bezug
Integral von Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 So 26.03.2006
Autor: leduart

Hallo Prof
cos(-y)=cos(y) guch dir die cos-fkt an, sie ist symmetrisch.
Ausserdem einfacher: [mm] cos(\pi/2-y)=cos(y-\pi/2)=sin(y)! [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]