www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral von
Integral von < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral von: integral
Status: (Frage) beantwortet Status 
Datum: 20:07 Mi 19.09.2007
Autor: fuchsone

Aufgabe
berechne folgendes Intergral

[mm] \integral_{}^{}{2x-1 / x^{3}+2x^{2}-4x-8 dx} [/mm]

Mir fehlt hier leider der Ansatz ich muss bei der Aufgabe bestimmt die Substitution und Partialbruchzerlegung anwenden aber ich weis nicht wie.
Kann mir jemand weiterhelfen?

        
Bezug
Integral von: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 20:13 Mi 19.09.2007
Autor: Loddar

Hallo fuchsone!


Du hast völlig recht: dieses Integral löst man, indem man den Bruch zunächst einer Partialbruchzerlegung unterzieht. Dafür benötigst Du die Nullstellen des Nenners. Damit ergibt sich hier:

[mm] $$\bruch{2x-1}{x^3+2x^2-4x-8} [/mm] \ = \ [mm] \bruch{2x-1}{(x+2)^2*(x-2)} [/mm] \ = \ [mm] \bruch{A}{x+2}+\bruch{B}{(x+2)^2}+\bruch{C}{x-2}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Integral von: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Mi 19.09.2007
Autor: JanJan

stimmt es, dass A= [mm] \bruch{3}{16}, [/mm] B= [mm] -\bruch{3}{16}, [/mm] und [mm] C=\bruch{5}{4}? [/mm]

Bezug
                
Bezug
Integral von: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Mi 19.09.2007
Autor: fuchsone


>  
> [mm]\bruch{2x-1}{x^3+2x^2-4x-8} \ = \ \bruch{2x-1}{(x+2)^2*(x-2)} \ = \ \bruch{A}{x+2}+\bruch{B}{(x+2)^2}+\bruch{C}{x-2}[/mm]

jetzt müsste doch

[mm] 2x-1=A(x+2)^{2}(x-2)+B(x+2)(x-2)+C(x+2)^{3} [/mm] gelten.

da meine nullstellen x1=2 x2=-2 sind müsste ich die nun einsetzten um A,B,C zu errechnen.

nun kommt bei mir aber C=3/64 raus und wenn ich -2 einsetze kommt -5=0 raus??
wo liegt mein fehler?


Bezug
                        
Bezug
Integral von: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mi 19.09.2007
Autor: schachuzipus

Hallo fuchsone,

du musst doch die einzelnen Brüche nur so erweitern, dass sie nachher den  gemeinsamen Hauptnenner haben

Also [mm] $\frac{2x+1}{(x-2)(x+2)^2}=\frac{A(x-2)(x+2)}{(x-2)(x+2)^2}+\frac{B(x-2)}{(x-2)(x+2)^2}+\frac{C(x+2)^2}{(x-2)(x+2)^2}$ [/mm]


Damit komme ich auf [mm] $A=-\frac{5}{16},B=\frac{3}{4},C=\frac{5}{16}$ [/mm]

LG

schachuzipus

Bezug
                                
Bezug
Integral von: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 19.09.2007
Autor: schachuzipus

Hi nochmal
>
> Damit komme ich auf
> [mm]A=-\frac{5}{16},B=\frac{3}{4},C=\frac{5}{16}[/mm]

Aber nur weil ich nicht rechnen kann [kopfschuettel]

Nach nochmaligem und sorgfältigerem Nachrechnen komme ich nun auf [mm] $A=-\frac{3}{16},B=\frac{5}{4},C=\frac{3}{16}$ [/mm]

Also nur etwas verdreht die Lösung von JanJan oben...

Aber ohne Gewähr und schon gar nicht mit Gewehr.

LG und [sorry]

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]