www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Integral vek. Normalverteilung
Integral vek. Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral vek. Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Mo 24.01.2011
Autor: LukasApfel

Aufgabe
[mm]\bruch{1}{2 \pi \wurzel{1-r^2}\sigma^2} \integral_{0}^{\infty} \integral_{0}^{\infty}e^{\bruch{x^2-2rxy+y^2}{(1-r^2)\sigma^2}}dx dy[/mm]

Hallo liebes Forum.

Ich gehe davon aus, das ich auf die ein- oder andere Weise substituieren muss. Wenn ich z.B. [mm] $x^2/2=a$ [/mm] und [mm] $y^2/2=b$ [/mm] substituiere, entstehen Wurzeln im gemischten Term, die die Sache wieder komplizierter machen.

Was wäre die erste Substitution?

Viele Grüße
LukasApfel


        
Bezug
Integral vek. Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Mo 24.01.2011
Autor: MathePower

Hallo LukasApfel,

> [mm]\bruch{1}{2 \pi \wurzel{1-r^2}\sigma^2} \integral_{0}^{\infty} \integral_{0}^{\infty}e^{\bruch{x^2-2rxy+y^2}{(1-r^2)\sigma^2}}dx dy[/mm]


Das soll doch bestimmt so lauten:

[mm]\bruch{1}{2 \pi \wurzel{1-r^2}\sigma^2} \integral_{0}^{\infty} \integral_{0}^{\infty}e^{\blue{-}\bruch{x^2-2rxy+y^2}{(1-r^2)\sigma^2}}dx dy[/mm]


>  
> Hallo liebes Forum.
>  
> Ich gehe davon aus, das ich auf die ein- oder andere Weise
> substituieren muss. Wenn ich z.B. [mm]x^2/2=a[/mm] und [mm]y^2/2=b[/mm]
> substituiere, entstehen Wurzeln im gemischten Term, die die
> Sache wieder komplizierter machen.
>  
> Was wäre die erste Substitution?


Substituiere zunächst so, daß

[mm]\bruch{x^2-2rxy+y^2}{(1-r^2)\sigma^2}=u^{2}+v^{2}[/mm]

,wobei u und v linear von x  und y abhängen.


>  
> Viele Grüße
>  LukasApfel

>


Gruss
MathePower  

Bezug
                
Bezug
Integral vek. Normalverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:18 Mi 26.01.2011
Autor: LukasApfel

Hallo MathePower,
vielen Dank für deine Antwort. Ich habe eine Substitutionsregel gefunden:

[mm]u=ax+by[/mm]
[mm]v=bx+ay[/mm]

mit

[mm]a=\wurzel{\bruch{1+\wurzel{1-r^2}}{2(1-r^2)\sigma^2}}[/mm]
[mm]b=-\wurzel{\bruch{1-\wurzel{1-r^2}}{2(1-r^2)\sigma^2}}[/mm]

Das alte Integral...

[mm]\bruch{1}{2 \pi \wurzel{1-r^2}\sigma^2} \integral_{0}^{\infty} \integral_{0}^{\infty}e^{\blue{-}\bruch{x^2-2rxy+y^2}{\blue{2}(1-r^2)\sigma^2}}dx dy[/mm]

...vereinfacht sich dann also zum neuen Integral, da die Funktionaldeterminante [mm]a^2-b^2=\bruch{1}{\wurzel{1-r^2}\sigma^2}[/mm] zu...

[mm]\bruch{1}{2 \pi (1-r^2)\sigma^4} \integral_{0}^{\infty} \integral_{0}^{\infty}e^{\blue{-}\bruch{u^2+v^2}{\blue{2}}dx dy[/mm]

Das neue Integral (ohne den Vorfaktor ergibt dann [mm]\pi/2[/mm]. Als Ergebnis hätte ich aber laut Dozent eine arcus-Funktion erwarten sollen. Ich denke mal, dass bei meiner ersten Substitution dann tatsächlich etwas schiefgelaufen ist.

Wo könnte noch ein Haken sein? Ich würde gern meine Berechnung von [mm]a[/mm] und [mm]b[/mm] einscannen, aber das ist vielleicht auch zu viel des Guten.

Viele Grüße
Lukas


Bezug
                        
Bezug
Integral vek. Normalverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 28.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Integral vek. Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Fr 28.01.2011
Autor: LukasApfel

Ich habe nochmal hier in der Uni gefragt, wie ich das Integral am besten löse. Die Antwort war: "Probieren Sie doch mal, stumpf Polarkoordinaten anzusetzen."

Das war dann auch des Rätsels Lösung. Durch Polarkoordinaten kann das Integral aufgeteilt werden und erst über [mm] $\rho$ [/mm] integriert werden. Anschließend müssen einige Substitutionen durchgeführt werden.

Vielen dank trotzdem. Bei der deiner vorgeschlagenen Substitution habe ich Probleme mit den neuen Grenzen bekommen.

Viele Grüße
Lukas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]