www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral unter Kreisbogen
Integral unter Kreisbogen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral unter Kreisbogen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:26 Fr 05.05.2006
Autor: schletzing

Hallo!

Seit längerer Zeit sitze ich vor einer Aufgabe und komme einfach nicht so recht weiter.

Ich habe eine Kreisfunktion in allgemeiner Form, also

[mm] y = y_{m} \pm \wurzel{r^2 - (x - x_{m} )^2 } [/mm]

Der Kreis ist irgendwo nach oben hin verschoben und ich betrachte nur die untere Kreishälfte ( also nur das Minus-Zeichen).

Aber wie kann ich nun die Fläche unter diesem Kreisbogen berechnen?

Bei mir steht nun auf dem Papier:

[mm] F(x) = \integral{y_m dx} -1 * \integral{ \wurzel{ r^2 - (x - x_{m})^2} dx} [/mm]

Und genau das ist der Punkt an dem ich nicht weiß wie es weiter geht.

Das Integral [mm] \integral{y_{m} dx} [/mm] zu lösen ist ja kein Problem, viel mehr Schwierigkeiten macht mir die Konstante [mm] x_{m} [/mm] unter der Wurzel.

Wenn ich den Sonderfall betrachte, dass der Kreismittelpunkt genau im Koordinatenursprung liegt, also [mm] x_{m} = 0 [/mm] und [mm] y_{m} = 0 [/mm] komme ich mit der Substitution

[mm] x = r * \sin t [/mm]

zum Ziel, aber ich habe das Gefühl in meinem Fall (mit der allgemeinen Kreisgleichung) ist das nicht der richtige Weg.

Es muss doch eine Lösung für dieses Problem geben!

Ich habe mir auch schon überlegt immer mit der vereinfachten Gleichung zu rechnen und anschließend immer die Rechteckfläche, die durch das verschieben des Mittelpunktes entsteht, hinzuzuaddieren, aber das kann ja eigentlich nicht "die feine englische Art" sein, oder?

Hat irgendjemand eine bessere Idee?

Vielen Dank im voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Integral unter Kreisbogen: andere Substitution
Status: (Antwort) fertig Status 
Datum: 10:39 Fr 05.05.2006
Autor: Roadrunner

Hallo schletzing,

[willkommenmr] !!


Substituiere doch einfach:  $x \ := \ [mm] r*\sin(t)+x_M$ $\gdw$ [/mm]    $t \ = \ [mm] \arcsin\left(\bruch{x-x_M}{r}\right)$ [/mm]

Bedenke dabei, dass  [mm] $x_M [/mm] \ = \ const.$ .


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]