www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Integral und Reihe
Integral und Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral und Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 So 01.06.2014
Autor: LinaWeber

Aufgabe
1)zeigen sie, [mm] \integral_{0}^{1}{x^{x} dx}= \summe_{k=1}^{\infty}(-1)^{k+1}*\frac{1}{k^{k}} [/mm]
2) Bestimmen sie den Wert der Reihe bis auf einen Fehler [mm] 10^{-4} [/mm]

Hey
ich habe ein paar Probleme mit dieser Aufgabe.
1) hier habe ich versucht, den Satz anzuwenden, der besagt, dass
[mm] \integral_{0}^{T}{f(x) dx}= \summe_{k=0}^{\infty}\frac{a_{k}}{k+1}*T^{k+1} [/mm] für |T|< der Potenzradius der Reihe

auf unser Beispiel angewendet, erhalte ich dann:
[mm] \integral_{0}^{1}{x^{x} dx}=\summe_{k=0}^{\infty}\frac{a_{k}}{k+1}*1^{k+1} [/mm]


aber hier weiß ich dann wiederum nicht mehr genau wie ich weiter umformen kann, so dass ich die gewünschte Reihe erhalte..

2) wie kann man den (Grenz-)Wert der Reihe bestimmen? Das funtioniert doch eigentlich nur über Umwandlung in die Geometrische Reihe oder?


LG

        
Bezug
Integral und Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 So 01.06.2014
Autor: hippias


> 1)zeigen sie, [mm]\integral_{0}^{1}{x^{x} dx}= \summe_{k=1}^{\infty}(-1)^{k+1}*\frac{1}{k^{k}}[/mm]
>  
> 2) Bestimmen sie den Wert der Reihe bis auf einen Fehler
> [mm]10^{-4}[/mm]
>  Hey
>  ich habe ein paar Probleme mit dieser Aufgabe.
>  1) hier habe ich versucht, den Satz anzuwenden, der
> besagt, dass
> [mm]\integral_{0}^{T}{f(x) dx}= \summe_{k=0}^{\infty}\frac{a_{k}}{k+1}*T^{k+1}[/mm]
> für |T|< der Potenzradius der Reihe

O.K.

>  
> auf unser Beispiel angewendet, erhalte ich dann:
>  [mm]\integral_{0}^{1}{x^{x} dx}=\summe_{k=0}^{\infty}\frac{a_{k}}{k+1}*1^{k+1}[/mm]
>  
>
> aber hier weiß ich dann wiederum nicht mehr genau wie ich
> weiter umformen kann, so dass ich die gewünschte Reihe
> erhalte..

Schau doch bitte in Deinem Skript nach, welche Bedeutung die [mm] $a_{k}$ [/mm] haben.

>  
> 2) wie kann man den (Grenz-)Wert der Reihe bestimmen? Das
> funtioniert doch eigentlich nur über Umwandlung in die
> Geometrische Reihe oder?

Nein. Wenn Du die [mm] $a_{k}$ [/mm] der Potenzreihe kennst, kannst Du der Reihe nach die Glieder der Reihe berechnen und aufsummieren.

>  
>
> LG


Bezug
                
Bezug
Integral und Reihe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:27 So 01.06.2014
Autor: LinaWeber

Hey
erstmal danke für die Antwort


>  Schau doch bitte in Deinem Skript nach, welche Bedeutung
> die [mm]a_{k}[/mm] haben.

genau das ist mein Problem. in den Script steht nichts weiter über die [mm] a_{k} [/mm] s als das f(x)= [mm] \sum_{}a_{k}*x^{k} [/mm] eine Potenzreihe sei..
ich weiß aber lieder nicht genau, wie ich die [mm] a_{k}s [/mm] in diesem Fall ersetzen kann :-(
LG

Bezug
                        
Bezug
Integral und Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 So 01.06.2014
Autor: hippias


> Hey
>  erstmal danke für die Antwort
>  
>
> >  Schau doch bitte in Deinem Skript nach, welche Bedeutung

> > die [mm]a_{k}[/mm] haben.
>  
> genau das ist mein Problem. in den Script steht nichts
> weiter über die [mm]a_{k}[/mm] s als das f(x)= [mm]\sum_{}a_{k}*x^{k}[/mm]
> eine Potenzreihe sei..

Ja, also entwickle deine Funktion in eine Potenzreihe.

>  ich weiß aber lieder nicht genau, wie ich die [mm]a_{k}s[/mm] in
> diesem Fall ersetzen kann :-(
>  LG


Bezug
                                
Bezug
Integral und Reihe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:05 So 01.06.2014
Autor: LinaWeber

Hey
aber wie genau kann das gehen?
wie kann den eine Funktion mit [mm] f8x)=x^{x} [/mm] zu einer Potenzreihe mit [mm] \sum_{}a_{k}*x^{k} [/mm] werden?


LG

Bezug
                                        
Bezug
Integral und Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 So 01.06.2014
Autor: fred97


> Hey
>  aber wie genau kann das gehen?
>  wie kann den eine Funktion mit [mm]f8x)=x^{x}[/mm] zu einer
> Potenzreihe mit [mm]\sum_{}a_{k}*x^{k}[/mm] werden?

Gar nicht, denn [mm] x^x=e^{x*ln(x)} [/mm] ist nur für x>0 definiert.

FRED

>  
>
> LG


Bezug
                                                
Bezug
Integral und Reihe: Rückfrage
Status: (Frage) überfällig Status 
Datum: 13:17 So 01.06.2014
Autor: LinaWeber

Hey
okay danke. dann muss ich den Ansatz wohl verwerfen. Wie kann ich dann die obige Gleichung beweisen?


LG

Bezug
                                                        
Bezug
Integral und Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:41 Mo 02.06.2014
Autor: LinaWeber

Hey
kann vielleicht jemand den Fälligkeitszeitpunkt zu 10h verändern?
Danke!

LG

Bezug
                                                                
Bezug
Integral und Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:11 Mo 02.06.2014
Autor: Diophant

Hallo,

> Hey
> kann vielleicht jemand den Fälligkeitszeitpunkt zu 10h
> verändern?
> Danke!

Ja klar. So gut?

Gruß, Diophant

Bezug
                                                                        
Bezug
Integral und Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:52 Mo 02.06.2014
Autor: LinaWeber

super danke!

Bezug
                                                        
Bezug
Integral und Reihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 03.06.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Integral und Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Di 03.06.2014
Autor: Leopold_Gast

Verwende die Exponentialreihe: [mm]x^x = \operatorname{e}^{x \cdot \ln x} = 1 + \sum_{k=1}^{\infty} \frac{x^k (\ln x)^k}{k!} \, , \ \ 0 \leq x \leq 1[/mm]

Für [mm]x=0[/mm] sind [mm]x^x[/mm] mit dem Wert 1 und die Glieder der Reihe mit dem Wert 0 stetig zu ergänzen. Gliedweise Integration führt auf die Integrale

[mm]\alpha_k = \int_0^1 \frac{x^k (\ln x)^k}{k!} ~ \mathrm{d}x \, , \ k \geq 1[/mm]

Zeige nun für ganze Zahlen [mm]j,k[/mm] mit [mm]1 \leq j \leq k[/mm] mittels partieller Integration

[mm]\int_0^1 x^k (\ln x)^j ~ \mathrm{d}x = - \frac{j}{k+1} \int_0^1 x^k (\ln x)^{j-1} ~ \mathrm{d}x[/mm]

Eine mehrfache Anwendung dieser Formel erlaubt die Berechnung der [mm]\alpha_k[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]