www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral mittels Substitution
Integral mittels Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mittels Substitution: Frage
Status: (Frage) beantwortet Status 
Datum: 22:44 Fr 22.04.2005
Autor: Maiko

Hallo!

Ich möchte folgendes Integral lösen:

[mm] \bruch{1+2*\wurzel{x-1}}{x*(\wurzel{x-1}-2)} [/mm]

Ich bin folgendermaßen vorgegangen:
w=x-1

dw/dx=1
dx=1*dw

[mm] \integral_{}^{} {\bruch{1+2\wurzel{w}}{(w+1)(\wurzel{w}-2)} dw} [/mm]

Jetzt mach ich Partialbruchintegration
Bei mir bleibt nach einigen Schritten stehen:

[mm] 1+2*\wurzel{w} [/mm] = A(w+1) + B(w-4)

Leider bekomme ich beim Einsetzen der NST (w=4 und w=-1) auf einen negativen Wert in der Wurzel (w=-1).
Ich komme also beim Koeffizientenvergleich zu keinem Ergebnis.

Bitte um Hilfe! Was hab ich falsch gemacht.


        
Bezug
Integral mittels Substitution: Idee
Status: (Antwort) fertig Status 
Datum: 23:16 Fr 22.04.2005
Autor: sara_20

Versuch es mal mit w= [mm] \wurzel{x-1}. [/mm] Ich habe ihn eben so geloesst. Du solltest am Ende [mm] bekommen:2*arctg\wurzel{x-1} [/mm] + [mm] 4*ln|\wurzel{x-1} [/mm] -2|.
Das was du im zweiten Schritt gemacht hast ist ein wenig komplizierter wenn es wurzeln gibt.

Ich hoffe ich konnte dir helfen.

Bezug
                
Bezug
Integral mittels Substitution: Frage
Status: (Frage) beantwortet Status 
Datum: 23:36 Fr 22.04.2005
Autor: Maiko

Danke Sara.
Ich hätte es wahrscheinlich dazu schreiben sollen, dass ich die Aufgabe mit dieser Substitution bereits gelöst habe.

Ich dachte mir nur, dass eine Lösung mittels w=x-1 auch möglich sein müsste.

Vielleicht hat ja noch jmd. einen Tipp, wie ich die Aufgabe mit dieser Substitution lösen könnte?

Bezug
                        
Bezug
Integral mittels Substitution: Der einzige Weg!
Status: (Antwort) fertig Status 
Datum: 03:23 Sa 23.04.2005
Autor: Loddar

Hallo Maiko!


Wenn ich mir Sara's Vorschlag für die Stammfunktion $F(x)$ ansehe (die auch zu stimmen scheint ;-) ), wage ich zu behaupten, daß $z \ := \ [mm] \wurzel{x-1}$ [/mm] die einzige Substitution ist, die zum Ziel führt.


Gruß
Loddar


Bezug
                        
Bezug
Integral mittels Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 09:02 Sa 23.04.2005
Autor: Paulus

Lieber Maiko

bitte beachte auch noch, dass die Voraussetztungen für eine Partialbruchzerlegung bei deinem Lösungsversuch gar nicht gegeben sind!

Es müsste ja [mm] $\bruch{\mbox{Polynom}}{\mbox{Polynom}}$ [/mm] sein! Da haben Wurzeln nichts verloren!

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]