www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral mit rationaler Fkt.
Integral mit rationaler Fkt. < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mit rationaler Fkt.: Idee zur Substitution
Status: (Frage) beantwortet Status 
Datum: 23:49 Do 10.01.2008
Autor: Sonja

Aufgabe
Man gebe jeweils die Stammfunktion an
[mm] \int [/mm] –2 [mm] \cdot \frac{y^2 + 3}{y^4 –2 \cdot y^2 + 9} [/mm] dy

Hallo Leute,
ich habe hier ein Integral, das ich nicht lösen kann. Es geht um [mm] \int [/mm] –2 [mm] \cdot \frac{y^2 + 3}{y^4 –2 \cdot y^2 + 9} [/mm] dy. Als erstes könnte man ja [mm] t=y^2 [/mm] substituieren und erhielte [mm] \int [/mm] – [mm] \frac{t + 3}{t^2 – 2 t + 9} \cdot \frac{1}{\sqrt{t}} [/mm] dt.  Hat jemand eine Idee, was man von da aus machen kann? Ich hatte die Idee, es trigonometrisch zu machen, aber das hat leider auch nicht weitergeholfen.
Viele Grüße, Sonja
P.S. In meiner Vorschau wird der Term unterm Bruch falsch angezeigt, es sollte [mm] y^4 [/mm] –2 [mm] \cdot y^2 [/mm] + 9 sein.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral mit rationaler Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 02:01 Fr 11.01.2008
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Sonja,

ich habe eine Methode gefunden, die allerdings mehr als unschön ist...

Es klappt über eine Partialbruchzerlegung, die aber auch nicht sehr schön ist

Zunächst ziehe mal das $-2$ vor das Integral

Denn Nenner kannst du schreiben als $y^4-2y^2+9=(y^2+2\sqrt{2}y+3)\cdot{}(y^2-2\sqrt{2}y+3)$

Dann ergibt sich für die PBZ der Ansatz

$\frac{y^2+3}{y^4-2y^2+9}=\frac{Ay+B}{y^2+2\sqrt{2}y+3}+\frac{Cy+D}{y^2-2\sqrt{2}y+3}$

Das liefert nach wildem Hin- und Hergerechne und Koeffizientenvergleichen:

$A=C=0, B=D=\frac{1}{2}$

Also kannst du $\frac{y^2+3}{y^4+2\sqrt{2}y+3}$ schreiben als $\frac{1}{2}\cdot{}\frac{1}{y^2+2\sqrt{2}y+3}+\frac{1}{2}\cdot{}\frac{1}{y^2-2\sqrt{2}y+3}$

$=\frac{1}{2}\cdot{}\left(\frac{1}{y^2+2\sqrt{2}y+3}+\frac{1}{y^2-2\sqrt{2}y+3}\right)$

Damit ergibt sich für das Integral nun:

$-2\int{\frac{1}{2}\cdot{}\left(\frac{1}{y^2+2\sqrt{2}y+3}+\frac{1}{y^2-2\sqrt{2}y+3}\right) \ dy=-\int{\frac{1}{y^2+2\sqrt{2}y+3} \ dy} \ - \int{\frac{1}{y^2-2\sqrt{2}y+3} \ dy}$

$=-\int{\frac{1}{\left(y+\sqrt{2}\right)^2+1} \ dy} \ - \int{\frac{1}{\left(y-\sqrt{2}\right)^2+1} \ dy}$

Nun kannst du endlich substituieren ;-)

$t:=y+\sqrt{2}$ für das erste Integral und $u:=y-\sqrt{2}$

Dann solltest du hinkommen....

Alles in allem ist das aber ein ziemliches Hammerintegral


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]