www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral mit Substitution
Integral mit Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mit Substitution: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:12 So 28.12.2008
Autor: stefan00

Aufgabe
Seien a < b [mm] \in \IR [/mm] so gewählt, dass die folgenden Integrale definiert sind.
Bestimmen Sie die Integrale mit Substitution.
[mm] \integral_{a}^{b}{ln(cos(x)) tan(x)dx}. [/mm]

Hallo,

ich habe nun schon herumprobiert mit [mm] tan(x)=\bruch{sin(x)}{cos(x)} [/mm] und auch mit dem Wissen, dass [mm] \integral_{a}^{b}{tan(x)dx}=-ln(cos(x))+c [/mm], usw. Ich komme auf keine wirklich gute Lösung. Wahrscheinlich muss ich zweimal substituieren, aber ich weiß nicht, ob ich mich da nicht verrenne. Kann mir jemand einen Tipp geben?

Vielen Dank, Gruß, Stefan.

        
Bezug
Integral mit Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 So 28.12.2008
Autor: MathePower

Hallo stefan00,

> Seien a < b [mm]\in \IR[/mm] so gewählt, dass die folgenden
> Integrale definiert sind.
>  Bestimmen Sie die Integrale mit Substitution.
>  [mm]\integral_{a}^{b}{ln(cos(x)) tan(x)dx}.[/mm]
>  
> Hallo,
>  
> ich habe nun schon herumprobiert mit
> [mm]tan(x)=\bruch{sin(x)}{cos(x)}[/mm] und auch mit dem Wissen, dass
> [mm]\integral_{a}^{b}{tan(x)dx}=-ln(cos(x))+c [/mm], usw. Ich komme
> auf keine wirklich gute Lösung. Wahrscheinlich muss ich
> zweimal substituieren, aber ich weiß nicht, ob ich mich da
> nicht verrenne. Kann mir jemand einen Tipp geben?


Bilde mal die Ableitung von

[mm]\operatornam{ln}\left( \ \cos\left(x\right) \ \right)[/mm]


>  
> Vielen Dank, Gruß, Stefan.


Gruß
MathePower

Bezug
                
Bezug
Integral mit Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 So 28.12.2008
Autor: stefan00

Hallo MathePower,

> Bilde mal die Ableitung von
>  
> [mm]\operatornam{ln}\left( \ \cos\left(x\right) \ \right)[/mm]

ok, die Ableitung ist -tan(x) oder [mm] -\bruch{sin(x)}{cos(x)}, [/mm] hm, aber was muss ich nun substituieren? u=ln(cos(x))?

Sorry, ich komme noch nicht weiter.

Danke, Gruß, Stefan.

Bezug
                        
Bezug
Integral mit Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 So 28.12.2008
Autor: reverend

Ja, [mm] u=\ln{(\cos{x})} [/mm] ist gut.

Dann hast du ja [mm] \bruch{du}{dx}=-\bruch{\sin{x}}{\cos{x}} [/mm]

Umgeformt: [mm] dx=-\bruch{\cos{x}}{\sin{x}}du [/mm]

...was das Integral ja auf ein spartanisches Format hin umdekoriert.

Bezug
                                
Bezug
Integral mit Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 28.12.2008
Autor: stefan00

Hallo Reverend,
> Ja, [mm]u=\ln{(\cos{x})}[/mm] ist gut.
>  
> Dann hast du ja [mm]\bruch{du}{dx}=-\bruch{\sin{x}}{\cos{x}}[/mm]
>  
> Umgeformt: [mm]dx=-\bruch{\cos{x}}{\sin{x}}du[/mm]
>  
> ...was das Integral ja auf ein spartanisches Format hin
> umdekoriert.

ja, natürlich, dann habe ich ja [mm] -\integral_{a}^{b}{u \bruch{sin(x)}{cos(x)}\bruch{cos(x)}{sin(x)}du} [/mm] = [mm] -\integral_{a}^{b}{u du} [/mm] = [mm] -\bruch{u^2}{2}, [/mm] und das ergibt ja resubstituiert: [mm] -\bruch{1}{2}(ln(cos(x))^2. [/mm]

Danke schön, hatte wohl mächtig Tomaten auf den Augen.

Gruß, Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]