www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral lösen
Integral lösen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral lösen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:25 Fr 11.02.2005
Autor: nitro

Hallo,

ich versuche das Integral

[mm] \integral{r \wurzel{1+ \bruch{r^{2}}{a^{2}}} dr} [/mm]

zu lösen. Ich weiß, daß die Lösung

[mm] \bruch{a^{2}}{3} (1+\bruch{r^{2}}{a^{2}})^{3/2} [/mm]

ist. Ich habe zuerst versucht [mm] \wurzel{1+ \bruch{r^{2}}{a^{2}}} [/mm] durch 1 + [mm] sinh^{2}(z) [/mm] = [mm] cosh^{2}(z) [/mm] substituieren. Damit ist r = a * sinh(z) sowie dr = a*cosh(z)*dz . Setze ich das ein, erhalte ich das folgende Integral:

[mm] \integral_{}^{} {a^{2}*sinh(z)*cosh^{2}(z) dz} [/mm]

Allerdings kann ich nun dieses Integral nicht lösen. Ich habe noch versucht [mm] cosh^{2} [/mm] wiederum mit [mm] 1+sinh^{2} [/mm] zu ersetzen, aber das führt irgendwie zu nichts. Ist der Ansatz mit sinh und cosh zu substituieren geeignet? Wenn ja, wie kann ich das letzte integral lösen?

Vielen Dank für Kommentare und Lösungsvorschläge!

-Matthias

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Fr 11.02.2005
Autor: SchwarzesSchaf

Hi Matthias,

warum so kompliziert. Es geht viel einfacher. Substituiere einfach den Radikanten 1+ [mm] \bruch{r^2}{a^2}. [/mm]  Probiers mal aus, das geht ganz fix. :)

Gruß, liane

PS: darauf kommt man schnell wenn man sich die Lösung anschaut und nicht zu kompliziert denkt ;)

Bezug
                
Bezug
Integral lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Fr 11.02.2005
Autor: nitro

Vielen Dank! Habs nachgerechnet und funktioniert wunderbar :) Im Nachhinein gesehen war es wirklich extrem einfach; mir ist ja fast schon peinlich das ich gefragt hab :) Dabei sah der sinh Ansatz so schön aus...

-Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]