www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Integral komplexe Fkt berechne
Integral komplexe Fkt berechne < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral komplexe Fkt berechne: allg. Vorgehen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:02 Mo 07.05.2007
Autor: kampfsocke

Aufgabe
Berechnen Sie:

a) [mm] \integral_{|z-1|=1}^{}{\bruch{1}{z^{2}-1}dz} [/mm]

b)  [mm] \integral_{|z|=2}^{}{\bruch{cos( \pi z )}{z^{2}-1}dz} [/mm]

Hallo allerseits,

ich weiß einfach nicht wie man komplexe Integrale berechnet. Denn ich nehme mal z [mm] \in \IC [/mm] an; steht nicht explizit da.

Wenn ich eine holomorphe Funktion über eine Kreisscheibe integriere, müsste ja 0 rauskommen. Also wird die Funktion nicht holomorph sein. Das soll ich aber nicht zeigen.

Wahrscheinlich muss ich eine passende Paramerisierung finden. Die "normele" für eine Kreisscheibe: [mm] \gamma [/mm] (t) = [mm] z_{0}+re^{it} [/mm] (mit r=1 und [mm] z_{0}=1 [/mm]  bringt mich aber auf keinen grünen Zweig.

Die Cauchysche Integralformel f(a)= [mm] \bruch{1}{2\pi i} \integral_{|z-z_{o}=r}^{}{\bruch{f(z)}{z-a} dz} [/mm] kenne ich, weiß aber nicht wie die mir helfen soll, weil ich ja nur f(a) raus bekomme.

Es wäe toll wenn ihr mir den Ansatz sagt, oder die Vorgehensweise. Denn genau da hapert es gerade.

Die b) müsste dann ziemlich ähnlich sein.
Die kriege ich aber hoffentlich selber raus, wenn ich die Vorgehensweise kenne.

Danke für eure Hilfe!

Sara

        
Bezug
Integral komplexe Fkt berechne: Tipp zu a) und b)
Status: (Antwort) fertig Status 
Datum: 19:38 Mo 07.05.2007
Autor: MicMuc

Schreib jeweils den Nenner als Produkt von Linearfaktoren!
Mache dann eine Partialbruchzerlegung und teile das Integral auf.

Da Du die Cauchysche-Integralformel kennst, solltest Du dann auch jeweils auf eine Lösung kommen ...

Bezug
                
Bezug
Integral komplexe Fkt berechne: komisches Ergebnis
Status: (Frage) überfällig Status 
Datum: 20:15 Mo 07.05.2007
Autor: kampfsocke

Hallo, danke für die schnelle Anwort.

mit PBZ bekomme ich [mm] \integral_{|z-1|=1}^{}{\bruch{1}{z^{2}-1} dz} [/mm] = [mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z-1} dz} [/mm] - [mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z+1} dz} [/mm]

Das erste lässt sich schön mit der oben genannten Parametrisierung nach [mm] \pi [/mm] i auflösen, aber beim zweiten sieht es nicht so toll aus:

[mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z+1} dz} [/mm] = [mm] \bruch{1}{2} \integral_{0}^{2\pi}{\bruch{1}{2+e^{it}}*ie^{it} dz} [/mm] = [mm] \bruch{1}{i}*ln(2+e^{it}) [/mm]
und nun die Grenzen eingesetzt: =  [mm] \bruch{1}{i}*ln(2+e^{i2\pi})- \bruch{1}{i}*ln(3) [/mm]
und das sieht ja nicht so schön aus.

Hab ich einen Fehler?

Danke für deine Hilfe,
Sara





Bezug
                        
Bezug
Integral komplexe Fkt berechne: Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Mo 07.05.2007
Autor: kampfsocke

Die Stammfunktion hat einen kleinen Fehler:

[mm] \bruch{1}{2}\integral_{0}^{2\pi}{\bruch{1}{2+e^{it}}*ie^{it} dt} [/mm] = [mm] \bruch{1}{2}ln(2+e^{it}) [/mm]
also mit Grenzen: [mm] \bruch{1}{2}ln(2+e^{i2\pi})-\bruch{1}{3}ln(3) [/mm]

das ist aber auch nicht besser

Bezug
                        
Bezug
Integral komplexe Fkt berechne: Aufgabe geloest?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:12 Di 08.05.2007
Autor: kampfsocke

Hallo allerseits.
Damit die Aufgabe nicht so verlohren hier steht, poste ich meine (fast) entgieltige Loesung nochmal.

[mm] \integral_{|z-1|=1}^{}{\bruch{1}{z^{2}-1} dz} [/mm] = [mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z-1} dz} [/mm] -  [mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z+1} dz} [/mm]

nach dem Cauchyschen Integralsatz fuer Kreischeiben mit f(z)=1, a=1 gilt:
[mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z-1} dz} [/mm] = [mm] \pii [/mm] f(1) = [mm] \pii [/mm]

[mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z+1} dz} [/mm] =  [mm] \pii [/mm] f(-1) [mm] =\pii [/mm]

Damit waere das gesamtergebnis 0?

Kann das so hinkommen?

Komische Aufgabe.

Viele Gruesse,
Sara

Bezug
                        
Bezug
Integral komplexe Fkt berechne: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:23 Mi 09.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]