www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral (cos x)^3*ln(sin x)
Integral (cos x)^3*ln(sin x) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral (cos x)^3*ln(sin x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 So 12.06.2011
Autor: BunDemOut

Aufgabe
Berechnen Sie folgende Integrale:
d) [mm] \integral{cos^3 x * ln (sin x) dx} [/mm]

Habe versucht u= sin x zu substituieren und komme dann auf folgendes Integral:
[mm] \integral{(1-u^2)*ln(u) du} [/mm]
hier weiß ich aber nicht mehr weiter.
Durch partielle Integration bekomme ich wieder Terme mit x rein:
[mm] t'=1-u^2 [/mm]
[mm] t=u-\bruch{u^3}{3} [/mm]

s=ln(u)
[mm] s'=\bruch{du}{dx} [/mm] * [mm] \bruch{1}{u} [/mm]

Wie löst man also dieses Integral am geschicktesten?

Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral (cos x)^3*ln(sin x): Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 So 12.06.2011
Autor: schachuzipus

Hallo BunDemOut,


> Berechnen Sie folgende Integrale:
>  d) [mm]\integral{cos^3 x * ln (sin x) dx}[/mm]
>  Habe versucht u=  sin x zu substituieren [ok]

Gute Idee!

> und komme dann auf folgendes
> Integral:
>  [mm]\integral{(1-u^2)*ln(u) du}[/mm] [daumenhoch]

>  hier weiß ich aber nicht
> mehr weiter.
>  Durch partielle Integration bekomme ich wieder Terme mit x
> rein:

Nein, bekommst du nicht!

>  [mm]t'=1-u^2[/mm]
>  [mm]t=u-\bruch{u^3}{3}[/mm]
>  
> s=ln(u)
>  [mm]s'=\bruch{du}{dx}[/mm] * [mm]\bruch{1}{u}[/mm]

Nein, es ist [mm]s[/mm] eine Funktion in u!!

[mm]s=s(u)=\ln(u)\Rightarrow s'(u)=\frac{ds}{du}=\frac{1}{u}[/mm]

Die Wahl von [mm]s,t[/mm] ist genau richtig und zielführend!

Regel:

[mm]\int{t'(u)\cdot{}s(u) \ du} \ = \ t(u)\cdot{}s(u)-\int{t(u)\cdot{}s'(u) \ du}[/mm]

Bastel nur alles zusammen ...

Du bist auf dem richtigen Weg!

>  
> Wie löst man also dieses Integral am geschicktesten?
>  
> Danke!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Integral (cos x)^3*ln(sin x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 So 12.06.2011
Autor: BunDemOut

Achso, ich muss hier also nicht beachten, dass mein u auch noch von x abhängt? das ist doch eigentlich streng genommen ein u(x) und damit wäre mein s ein s(u(x))...
Oder sehe ich das falsch?



Bezug
                        
Bezug
Integral (cos x)^3*ln(sin x): Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 So 12.06.2011
Autor: schachuzipus

Hallo nochmal,


> Achso, ich muss hier also nicht beachten, dass mein u auch
> noch von x abhängt?

Nein, mache die partielle Integration nur in der Variablen u, $s,t$ sind doch nur Hilfsfunktionen.

Wenn du das Integral in u ausgerechnet hast, mache am Ende die Resubstitution und drücke alles wieder in $x$ aus ...

> das ist doch eigentlich streng
> genommen ein u(x) und damit wäre mein s ein s(u(x))...
>  Oder sehe ich das falsch?


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]