www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Integral beweisen
Integral beweisen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral beweisen: Idee korrekt?
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 11.08.2011
Autor: mikexx

Aufgabe
Hallo, liebe Helferinnen und Helfer!

Ich benötige mal wieder Euren guten Rat, bitte.

Und zwar ist Folgendes zu zeigen, wobei [mm]a,b[/mm] positive reelle Zahlen sein sollen:

[mm]\int_0^{2\pi}\frac{1}{a^2\cos^2t+b^2\sin^2t}dt=\frac{2\pi}{ab}[/mm]

Nachdem ich mich erst vor kurzem mit dem Residuensatz befasst habe, habe ich die starke Vermutung, dass man diesen hier anwenden soll?

Ist das okay?

        
Bezug
Integral beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Do 11.08.2011
Autor: schachuzipus

Hallo mikexx,


> Hallo, liebe Helferinnen und Helfer!
>  
> Ich benötige mal wieder Euren guten Rat, bitte.
>  
> Und zwar ist Folgendes zu zeigen, wobei [mm]a,b[/mm] positive reelle
> Zahlen sein sollen:
>  
> [mm]\int_0^{2\pi}\frac{1}{a^2\cos^2t+b^2\sin^2t}dt=\frac{2\pi}{ab}[/mm]
>  Nachdem ich mich erst vor kurzem mit dem Residuensatz
> befasst habe, habe ich die starke Vermutung, dass man
> diesen hier anwenden soll?
>  
> Ist das okay?

Ja, das ist eine Möglichkeit.

Das Integral ist ja von der Form [mm]\int\limits_{0}^{2\pi}{R(\cos(t),\sin(t)) \ dt}[/mm] mit [mm]R[/mm] eine rationale Funktion.

Dafür gibt es bekannte Ansätze über den Residuensatz.

Alternativ kannst du [mm]\frac{1}{z}[/mm] mal entlang des Ellipsenrandes [mm]\gamma(s)=a\cdot{}\cos(s)+ib\cdot{}\sin(s)[/mm] integrieren ...

(Letzteres ist nicht meine Idee :-))

Die Aufgabe nebst Lösung findet sich in dem Buch "Repetitorium der Funktionentheorie" vom BINOMI-Verlag, S.316, 11.3 Aufg. B 4) ...


Gruß

schachuzipus


Bezug
                
Bezug
Integral beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Fr 12.08.2011
Autor: mikexx


> Alternativ kannst du [mm]\frac{1}{z}[/mm] mal entlang des
> Ellipsenrandes [mm]\gamma(s)=a\cdot{}\cos(s)+ib\cdot{}\sin(s)[/mm]
> integrieren ...

Wenn ich das tue, so erhalte ich, daß

[mm]\int_{\gamma}\frac{1}{z}dz=2\pi i[/mm].

Jetzt muß ich das Integral, das eigentlich gesucht ist, irgendwie auf dieses berechnete Integral zurückführen. Ich komme jedoch gerade nicht darauf, wie.

Ein kleiner Hinweis wäre nett.

Bezug
                        
Bezug
Integral beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Sa 13.08.2011
Autor: schachuzipus

Hallo nochmal,


> > Alternativ kannst du [mm]\frac{1}{z}[/mm] mal entlang des
> > Ellipsenrandes [mm]\gamma(s)=a\cdot{}\cos(s)+ib\cdot{}\sin(s)[/mm]
> > integrieren ...
>  
> Wenn ich das tue, so erhalte ich, daß
>  
> [mm]\int_{\gamma}\frac{1}{z}dz=2\pi i[/mm].

Hmm, das ergibt sich doch mit dem Residuensatz.


Nun berechne mal das Kurvenintegral [mm]\int\limits_{\gamma}^{}{\frac{1}{z} \ dz}=\int\limits_{0}^{2\pi}{\frac{1}{\gamma(s)}\cdot{}\gamma'(s) \ ds}[/mm]


>  
> Jetzt muß ich das Integral, das eigentlich gesucht ist,
> irgendwie auf dieses berechnete Integral zurückführen.
> Ich komme jedoch gerade nicht darauf, wie.
>  
> Ein kleiner Hinweis wäre nett.

Ok

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]