www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral bestimmen
Integral bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Di 09.05.2006
Autor: Der_Malte

Aufgabe
Bestimmen Sie für die folgende Funktion k so, dass die von der Parabel und der ersten Achse eingeschlossene Fläche den Flächeninhalt  [mm] \bruch{64}{3} [/mm] besitzt.

f(x)=- [mm] \bruch{1}{4} x^{2} [/mm] + k

Hier zuerst mein Ansatz:

[mm] \integral_{-a}^{a}{f(x) dx}= -\bruch{1}{4}* \integral_{-a}^{a}{( x^{2}) dx} [/mm] + [mm] k*\integral_{-a}^{a}{(1) dx} [/mm]

also folgt: - [mm] \bruch{1}{4} [/mm] * ( [mm] \bruch{ a^{3}}{4} [/mm] - [mm] \bruch{- a^{3}}{4} [/mm] ) + k * (a - (-a)) =  [mm] \bruch{64}{3} [/mm]

Hierzu gekommen bin ich durch die Anwendung der Produkt- und Additionsregel der Integralrechnung. -a und a habe ich als Grenze gesetzt, da es sich ja um eine Parabel handelt und die x-Werte daher ja vom Betrag her gleich sein müssen auf Grund von Symmetrie.
Wenn ich diese Gleichung jetzt in meinem Taschenrechner eingebe (TI-89;mit F2 und dann solve. Auflösen sollte der Taschenrechner nach x und a) erhalte ich jedoch nur:

2*a*x - [mm] \bruch{ x^{3}}{6} [/mm] =  [mm] \bruch{64}{3} [/mm]

Habe ich einen Fehler in meiner Rechnung, weshalb kein konkretes Ergebnis rauskommt oder ist der Taschenrechner nicht in der Lage die Gleichung zu berechnen? Gibt es in diesem Fall noch weitere Ansätze, wie ich zur Lösung kommen kann?

MfG,

Malte

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral bestimmen: 2 Hinweise
Status: (Antwort) fertig Status 
Datum: 16:27 Di 09.05.2006
Autor: Roadrunner

Hallo Malte!


Zum einen lautet die Stammfunktion von [mm] $\integral{x^2 \ dx} [/mm] \ = \ [mm] \bruch{x^3}{\red{3}}$ [/mm] .


Zudem kannst Du ja auch den Wert $a_$ (also die Integrationsgrenzen) in Abhängigkeit vom Parameter $k_$ darstellen, da es sich hier ja um die Nullstellen der Parabel handelt:

[mm] $-\bruch{1}{4}x^2+k [/mm] \ = \ [mm] -\bruch{1}{4}*\left(x^2-4k\right) [/mm] \ = \ 0$    [mm] $\gdw$ $x_{1/2} [/mm] \ = \ [mm] \pm [/mm] \ [mm] 2*\wurzel{k}$ [/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]