Integral beschränkt? < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:56 Mo 19.06.2006 | Autor: | AT-Colt |
Aufgabe | Es sei [mm] $\sigma [/mm] > 0$ und g eine Funktion mit [mm] $\integral_{-\sigma}^{\sigma}{|g(u)|^2 du} [/mm] = [mm] \parallel g\parallel_{L^2}^2 [/mm] < [mm] \infty$, [/mm] sowie $F(x) = [mm] \integral_{-\sigma}^{\sigma}{g(u)\cdot e^{i2\pi ux} du}$.
[/mm]
Zeige:
[mm] $\integral_{-\infty}^{\infty}{|F(x)|^2 dx} [/mm] < [mm] \infty$ [/mm] |
Hallo Leute,
ich versuche die ganze Zeit, den gegebenen Ausdruck nett umzuformen, aber jedesmal verschwindet x aus der Abschätzung, so dass das Integral automatisch unbeschränkt wird.
Ich lande immer irgendwie bei einer Form der Cauchy-Schwarzschen Ungleichung, deswegen hier die Zusammenfassung von dem, wie meine Wege bis jetzt geendet sind:
[mm] $\integral_{-\infty}^{\infty}{|\integral_{-\sigma}^{\sigma}{g(u) e^{i2\pi ux} du}|^2 dx} [/mm] le$
[mm] $\integral_{-\infty}^{\infty}{(\integral_{-\sigma}^{\sigma}{|g(u)|^2 du})(\integral_{-\sigma}^{\sigma}{|e^{i2\pi ux}|^2 du})dx} [/mm] = $
[mm] $||g||_{L^2}^2\cdot\integral_{-\infty}^{\infty}{e^{i2\pi ux -i2\pi ux} dx} [/mm] = [mm] ||g||_{L^2}^2\cdot\integral_{-\infty}^{\infty}{1 dx} [/mm] = [mm] ||g||_{L^2}^2\cdot(\infty-(-\infty)) [/mm] = [mm] \infty$
[/mm]
Hat jemand eine Idee, wie man eine etwas... weniger grobe Abschätzung hinbekommt?
greetz
AT-Colt
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:33 Mo 19.06.2006 | Autor: | AT-Colt |
Da es gerade etwas gedauert hat, bis die Formeln erstellt wurden und ich jetzt nicht mehr editieren darf, hier die richtige Umformung:
[mm] $\integral_{-\infty}^{\infty}{|\integral_{-\sigma}^{\sigma}{g(u) e^{i2\pi ux} du}|^2 dx} \le$
[/mm]
[mm] $\integral_{-\infty}^{\infty}{(\integral_{-\sigma}^{\sigma}{|g(u)|^2 du})(\integral_{-\sigma}^{\sigma}{|e^{i2\pi ux}|^2 du})dx} [/mm] = $
[mm] $||g||_{L^2}^2\cdot\integral_{-\infty}^{\infty}{\integral_{-\sigma}^{\sigma}{e^{i2\pi ux -i2\pi ux} du} dx} [/mm] = [mm] ||g||_{L^2}^2\cdot\integral_{-\infty}^{\infty}{2\sigma dx} [/mm] = [mm] ||g||_{L^2}^2\cdot 2\sigma\cdot (\infty-(-\infty)) [/mm] = [mm] \infty$
[/mm]
greetz
AT-Colt
|
|
|
|
|
Hallo AT-Colt,
ich bins mal wieder, und du hast da schon wieder eine recht kniffelige aufgabe....
was du ja im grunde zeigen musst ist, dass die fourier-transformierte einer [mm] $L^2$-Funktion [/mm] wieder in [mm] $L^2$ [/mm] liegt. und dass ist meines wissens kein ganz trivialer beweis (internet-recherche hilft).
was du bei deinem argument komplett vernachlässigst, ist dass fourier-transformierte im unendlichen abklingen, deshalb ist es nicht verwunderlich, dass deine abschätzung so nicht funktioniert...
Gruß
Matthias
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:13 Di 20.06.2006 | Autor: | AT-Colt |
> Hallo AT-Colt,
>
> ich bins mal wieder,
Stört mich garnicht ^^;
> und du hast da schon wieder eine recht kniffelige aufgabe....
Tatsächlich? Ich hatte gehofft, dass ich mich einfach nur zu sehr
in eine Richtung verrannt hätte :/
> was du ja im grunde zeigen musst ist, dass die
> fourier-transformierte einer [mm]L^2[/mm]-Funktion wieder in [mm]L^2[/mm]
> liegt. und dass ist meines wissens kein ganz trivialer
> beweis (internet-recherche hilft).
>
> was du bei deinem argument komplett vernachlässigst, ist
> dass fourier-transformierte im unendlichen abklingen,
> deshalb ist es nicht verwunderlich, dass deine abschätzung
> so nicht funktioniert...
Ja, das ist mir heute morgen in der Uni auch eingefallen, dann
muss ich das nur überzeugend begründen, aber das bekomm
ich schon hin. Und wenn nicht, ists auch nicht schlimm, genug
Punkte hab ich, aber es stört mich halt, wenn gerade die
Aufgaben, bei denen ich mir denke "Joah, das müsste gehen!"
nicht funktionieren...
greetz
AT-Colt
|
|
|
|