www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral berechnen
Integral berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:03 Mo 28.01.2013
Autor: waruna

Aufgabe
[mm] \int\limits_{-\infty}^{\infty}\frac{e^{-i\omega(t-s)}}{\omega^2+\Gamma^2}d\omega [/mm]

Ich versuche obengenannte Integral zu berechnen. Mit Mathematica bekomme ich Antwort:
ConditionalExpression[ E^(-(Abs[s - [mm] t]/Sqrt[(1/g^2)])) Sqrt[1/g^2] \[Pi], [/mm]
s - t [mm] \[Element] [/mm] Reals && Re[g] != 0]
ich würde aber gern aber analytisch das berechnen, um sicher zu sein. Partielle Integration hat bei mir nicht geklappt, vielleicht jemand hat andere Idee? Vielleicht Cauchysche Integralsatz?

        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Mo 28.01.2013
Autor: MathePower

Hallo waruna,

>
> [mm]\int\limits_{-\infty}^{\infty}\frac{e^{-i\omega(t-s)}}{\omega^2+\Gamma^2}d\omega[/mm]
>  Ich versuche obengenannte Integral zu berechnen. Mit
> Mathematica bekomme ich Antwort:
>  ConditionalExpression[ E^(-(Abs[s - [mm]t]/Sqrt[(1/g^2)])) Sqrt[1/g^2] \[Pi],[/mm]
> s - t [mm]\[Element][/mm] Reals && Re[g] != 0]
>  ich würde aber gern aber analytisch das berechnen, um
> sicher zu sein. Partielle Integration hat bei mir nicht
> geklappt, vielleicht jemand hat andere Idee? Vielleicht
> Cauchysche Integralsatz?


Probier's mit dem Residuensatz .


Gruss
MathePower

Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Mo 28.01.2013
Autor: waruna

Vielen Dank für Tipp, aus Residuumsatz erhalte ich (wenn ich mich nicht irre):
[mm] 2\pi i(\frac{e^{\Gamma(t-s)}}{2i\Gamma}-\frac{e^{-\Gamma(t-s)}}{2i\Gamma})= \int\limits_{-\infty}^{\infty}\frac{e^{-i\omega(t-s)}}{\omega^2+\Gamma^2}d\omega [/mm]

Vorfaktor stimmt (ich habe angenommen, dass [mm] \omega [/mm] i [mm] \Gamma [/mm] reel sind), aber rest nicht so ganz...

Bezug
                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Mo 28.01.2013
Autor: MathePower

Hallo waruna,

> Vielen Dank für Tipp, aus Residuumsatz erhalte ich (wenn
> ich mich nicht irre):
>  [mm]2\pi i(\frac{e^{\Gamma(t-s)}}{2i\Gamma}-\frac{e^{-\Gamma(t-s)}}{2i\Gamma})= \int\limits_{-\infty}^{\infty}\frac{e^{-i\omega(t-s)}}{\omega^2+\Gamma^2}d\omega[/mm]
>  
> Vorfaktor stimmt (ich habe angenommen, dass [mm]\omega[/mm] i [mm]\Gamma[/mm]
> reel sind), aber rest nicht so ganz...


Maßgebend für Auswertung mit Hilfe des Residuumssatzes
ist der Ausdruck [mm]-\left(t-s\right)[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Mo 28.01.2013
Autor: waruna

Das verstehe ich nicht, warum nur Term mit -(t-s) relevant ist?  

Bezug
                                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Mo 28.01.2013
Autor: MathePower

Hallo waruna,


> Das verstehe ich nicht, warum nur Term mit -(t-s) relevant
> ist?  


Weil das Integral von der Bauart

[mm]\integral_{-\infty}^{+\infty}{g\left(w\right)*e^{iaw} \ dw}[/mm]

ist. Zu deren Auswertung ist nur das a von Bedeutung.

Für a > 0 sind die Residuen der oberen Halbebene maßgebend.
Für a < 0 sind die Residuen der unteren Halbebene maßgebend.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]