www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integral berechnen
Integral berechnen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 So 05.06.2011
Autor: zocca21

Aufgabe
Berechnen Sie das Integral [mm] \integral \bruch{\wurzel{x}}{x} [/mm]

Ich bin nun am überlegen wie ich das ganze geschickt substituieren kann.

Ansonsten würde mir nur die partielle Integration [mm] \integral \wurzel{x} [/mm] * [mm] x^{-1} [/mm] einfallen, welche aber sicher nicht so schön wird.

Danke für Tipps!

        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 So 05.06.2011
Autor: Valerie20


> Berechnen Sie das Integral [mm]\integral \bruch{\wurzel{x}}{x}[/mm]

Vereinfache doch erstmal  [mm] \bruch{\wurzel{x}}{x} [/mm] indem du die Potenzgesetze anwendest.

[mm] \bruch{a^{x}}{a^{z}} [/mm] = [mm] a^{x-z} [/mm]

>  
> Ich bin nun am überlegen wie ich das ganze geschickt
> substituieren kann.
>  
> Ansonsten würde mir nur die partielle Integration
> [mm]\integral \wurzel{x}[/mm] * [mm]x^{-1}[/mm] einfallen, welche aber sicher
> nicht so schön wird.
>  
> Danke für Tipps!


Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 So 05.06.2011
Autor: zocca21

D.h. ich kann das umschreiben als:

[mm] \bruch{\wurzel{x}}{x} [/mm] = [mm] x^{\bruch{1}{2} -1} [/mm] = [mm] x^{-1/2} [/mm] ?

Wobei dann dass Integral wäre: 2 [mm] \wurzel{x} [/mm]





Bezug
                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 So 05.06.2011
Autor: Valerie20


> D.h. ich kann das umschreiben als:
>  
> [mm]\bruch{\wurzel{x}}{x}[/mm] = [mm]x^{\bruch{1}{2} -1}[/mm] = [mm]x^{-1/2}[/mm] ?
>  
> Wobei dann dass Integral wäre: 2 [mm]\wurzel{x}[/mm]
>  
>
>
>  

richtig.



Bezug
                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 So 05.06.2011
Autor: zocca21

Super Vielen Dank!

Ich hätte zum Schluss noch eine Frage um gerade hier ein Verständnis zu bekommen:

Hätte ich nun [mm] \integral \bruch{\wurzel{x}}{x+1} [/mm] wie kann ich dann hier geschickt vorgehen?

Vielen Dank nochmal

Bezug
                                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 So 05.06.2011
Autor: schachuzipus

Hallo zocca21,


> Super Vielen Dank!
>  
> Ich hätte zum Schluss noch eine Frage um gerade hier ein
> Verständnis zu bekommen:
>  
> Hätte ich nun [mm]\integral \bruch{\wurzel{x}}{x+1}[/mm] wie kann
> ich dann hier geschickt vorgehen?

Substituiere hier zunächst [mm] $u=u(x)=\sqrt{x}$, [/mm] dann kommst du durch eine kleine Umformung auf ein wohlbekanntes Integral!

>  
> Vielen Dank nochmal

Gruß

schachuzipus


Bezug
                                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 So 05.06.2011
Autor: zocca21

Hmm ich seh nicht wie mir das hier weiterhilft:

u = [mm] \wurzel{x} [/mm]

u' = [mm] \bruch{1}{2} \bruch{1}{\wurzel{x}} [/mm]

Danke sehr nochmal.

Bezug
                                                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 So 05.06.2011
Autor: Steffi21

Hallo, warum hörst du auf

[mm] \integral_{}^{}{\bruch{\wurzel{x}}{x+1} dx} [/mm]

Substitution
[mm] u:=\wurzel{x} [/mm]
[mm] \bruch{du}{dx}=\bruch{1}{2\wurzel{x}} [/mm]
[mm] dx=2\wurzel{x}*du [/mm]

[mm] 2\integral_{}^{}{\bruch{u^{2}}{u^{2}+1} du} [/mm]

jetzt mache weiter

Steffi



Bezug
                                                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 So 05.06.2011
Autor: zocca21

Also weiter machen würd ich so:

t = [mm] u^2 [/mm] + 1
und [mm] u^2 [/mm] = t - 1

2 [mm] \integral \bruch{t-1}{t} [/mm] dt = 2 [mm] \integral [/mm] 1 [mm] -\bruch{1}{t} [/mm] = 2(t - ln(t))

= [mm] 2(u^2+1 [/mm] - [mm] ln(u^2+1) [/mm] = 2(x+1 - ln(x+1)

Ich hoffe ich habe das richtig aufgelöst.

Ich habe leider aber den Zwischenschritt noch nicht ganz verstanden: wie ich mit meinem dx =.... und u=...

Auf das Integral 2 [mm] \integral \bruch{u^2}{u^2+1} [/mm] komme.

Danke nochmal für eure Hilfe!

Bezug
                                                                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 So 05.06.2011
Autor: Steffi21

Hallo, zu lösen ist

[mm] \integral_{}^{}{\bruch{\wurzel{x}}{x+1} dx} [/mm]

Substitution:

[mm] u:=\wurzel{x} [/mm]

[mm] \bruch{du}{dx}=\bruch{1}{2\wurzel{x}} [/mm]

[mm] dx=2\wurzel{x}*du [/mm]

jetzt einsetzen

[mm] \integral_{}^{}{\bruch{u}{u^{2}+1}2\wurzel{x}*du} [/mm]

[mm] =\integral_{}^{}{\bruch{u}{u^{2}+1}2u*du} [/mm]

[mm] =\integral_{}^{}{\bruch{2u^{2}}{u^{2}+1}du} [/mm]

[mm] =2\integral_{}^{}{\bruch{u^{2}}{u^{2}+1}du} [/mm]

[mm] =2\integral_{}^{}{\bruch{u^{2}+1-1}{u^{2}+1}du} [/mm]

[mm] =2\integral_{}^{}{\bruch{u^{2}+1}{u^{2}+1}-\bruch{1}{u^{2}+1}du} [/mm]

[mm] =2*\integral_{}^{}{1-\bruch{1}{u^{2}+1}du} [/mm]

das sollte doch wohl schön lösbar sein

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]