www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integral ausrechnen
Integral ausrechnen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral ausrechnen: RIchtig gerechnet?
Status: (Frage) beantwortet Status 
Datum: 12:37 Di 13.09.2011
Autor: frank85

Aufgabe
Berechne die folgenden Integrale:
[mm] \integral_{[0,1]^2} [/mm] {(x*y*(x+y))dxdy}

Ich dachte das es vielleicht so geht:
[mm] \integral_{[0,1]^2} [/mm] {xy(x+y)dxdy}
[mm] =\integral_{[0,1]^2} {(x^2y+xy^2)dxdy} [/mm]
[mm] =\integral_{[0,1]^2} {(xy^2)dxdy} [/mm] + [mm] \integral_{[0,1]^2} {(y^2*x)dxdy} [/mm]
[mm] =\integral_{[0,1]} {x^2 dx} [/mm] * [mm] \integral_{[0,1]} [/mm] {y dy} + [mm] \integral_{[0,1]} [/mm] {x dx} * [mm] \integral_{[0,1]} {y^2 dy} [/mm]
=1/3 [mm] x^3 [/mm] * 1/2 [mm] y^2 [/mm] + 1/2 [mm] x^2 [/mm] * 1/3 [mm] y^2 [/mm] von 0 bis 1
Stimmt das soweit?
Danke für antworten

        
Bezug
Integral ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Di 13.09.2011
Autor: notinX

Hallo,

> Berechne die folgenden Integrale:
>  [mm]\integral_{[0,1]^2}[/mm] {(x*y*(x+y))dxdy}
>  Ich dachte das es vielleicht so geht:
>  [mm]\integral_{[0,1]^2}[/mm] {xy(x+y)dxdy}
>  [mm]=\integral_{[0,1]^2} {(x^2y+xy^2)dxdy}[/mm]
>  
> [mm]=\integral_{[0,1]^2} {(xy^2)dxdy}[/mm] + [mm]\integral_{[0,1]^2} {(y^2*x)dxdy}[/mm]
>  
> [mm]=\integral_{[0,1]} {x^2 dx}[/mm] * [mm]\integral_{[0,1]}[/mm] {y dy} +
> [mm]\integral_{[0,1]}[/mm] {x dx} * [mm]\integral_{[0,1]} {y^2 dy}[/mm]
>  =1/3
> [mm]x^3[/mm] * 1/2 [mm]y^2[/mm] + 1/2 [mm]x^2[/mm] * 1/3 [mm]y^2[/mm] von 0 bis 1
>  Stimmt das soweit?
>  Danke für antworten

Ja, das stimmt.
[mm] $\integral_{[0,1]^2} {(x^2y+xy^2)dxdy}$ [/mm]
bedeutet nichts anderes als:
[mm] $=\int_{0}^{1}\int_{0}^{1}\left(x^{2}y+xy^{2}\right)\:\mathrm{d}x\:\mathrm{d}y$ [/mm]

Die Integration kannst Du (nach Fubini) einfach nacheinander ausführen, also so:
[mm] $\int_{0}^{1}\int_{0}^{1}\left(x^{2}y+xy^{2}\right)\:\mathrm{d}x\:\mathrm{d}y=\int_{0}^{1}\left[\int_{0}^{1}\left(x^{2}y+xy^{2}\right)\:\mathrm{d}x\right]\:\mathrm{d}y$ [/mm]

Gruß,

notinX

Bezug
                
Bezug
Integral ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Di 13.09.2011
Autor: frank85

Kommt nach einsetzen der Grenzen dann auch 1/3 dabei heraus?
Danke schööön!

Bezug
                        
Bezug
Integral ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Di 13.09.2011
Autor: notinX


> Kommt nach einsetzen der Grenzen dann auch 1/3 dabei
> heraus?

Ja.

>  Danke schööön!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]