www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integral
Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mi 30.11.2011
Autor: jebote

Aufgabe
Es seien [mm] (X,\mathcal{F},\mu) [/mm] ein Maßraum und f: X [mm] \to [0,\infty) [/mm] eine nichtnegative messbare Elementarfunktion (also f [mm] \in \mathcal{E^{+}}), [/mm] die eine (nicht notwendig Standard-) Darstellung f(x) = [mm] \summe_{k=1}^{} \lambda_{k} \I1_{F_{k}} [/mm] (x) mit (nicht als disjunkt angenommen) [mm] F_{k} \in \mathcal{F} [/mm] hat. Zeigen Sie, dass auch mit dieser Darstellung das Integral von f durch [mm] \integral_{}^{}{fd\mu} [/mm] = [mm] \summe_{k=1}^{n} \lambda_{k} \mu(F_{k}) [/mm] gegeben ist.

Muss ich hier nur "Transformationen" durchführen, oder auch "Tricks" anwenden?

Danke für die Hilfe im Voraus.

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 07:06 Do 01.12.2011
Autor: fred97


> Es seien [mm](X,\mathcal{F},\mu)[/mm] ein Maßraum und f: X [mm]\to [0,\infty)[/mm]
> eine nichtnegative messbare Elementarfunktion (also f [mm]\in \mathcal{E^{+}}),[/mm]
> die eine (nicht notwendig Standard-) Darstellung f(x) =
> [mm]\summe_{k=1}^{} \lambda_{k} \I1_{F_{k}}[/mm] (x) mit (nicht als
> disjunkt angenommen) [mm]F_{k} \in \mathcal{F}[/mm] hat. Zeigen Sie,
> dass auch mit dieser Darstellung das Integral von f durch
> [mm]\integral_{}^{}{fd\mu}[/mm] = [mm]\summe_{k=1}^{n} \lambda_{k} \mu(F_{k})[/mm]
> gegeben ist.
>  Muss ich hier nur "Transformationen" durchführen, oder
> auch "Tricks" anwenden?

Je nach dem , was man unter diesen Begriffen verstehen mag, beides.

Das ist mal wieder so eine Aufgabe, die als Übungsaufgabe  in meinen Augen völlig ungeeignet ist.

Daher gebe ich Dir den Rat: einen Beweis findest Du in (fast) jedem Buch zur Maß- und Integrationstheorie.

FRED

>  
> Danke für die Hilfe im Voraus.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]