www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral
Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Idee
Status: (Frage) beantwortet Status 
Datum: 19:47 Fr 28.05.2010
Autor: Mimuu

Aufgabe
[mm] \integral_{}^{}{\bruch{1}{sin(x)+cos(x)}dx} [/mm]

ich habe mir hier überlegt, die Ableitung von sinx ist cosx. aber im Nenner steht ja eine additive Verknüpfung, d.h. so komme ich nicht weiter.
gibt es vielleicht einen einfachen trick? den ich gerade nicht sehe...

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Fr 28.05.2010
Autor: Gonozal_IX

Hiho,

erstmal: Wo kommt dieses Integral denn her?
Denn als Übungsaufgabe sollt ihr das bestimmt nicht lösen, das wird nämlich richtig eklig.

MFG,
Gono.

Bezug
                
Bezug
Integral: Rück
Status: (Frage) beantwortet Status 
Datum: 20:03 Fr 28.05.2010
Autor: Mimuu

doch das ist unsere Übungsaufgabe.

kannst mir mir nen tip geben, wie ich vorgehen muss. auch auf die gefahr hin, dass es "eklig" wird;)

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Fr 28.05.2010
Autor: dormant

Hi!

Falls du Tipps zur unbestimmten Integration, immer schön Bildchen malen, schauen wie das Ding aussieht usw. Heutzutage gibt es jede Menge Programme, die sturre Rechnungen durchführen. Also bei sowas immer einen Blick auf Wolframs Seiten werfen, wie hier z.B.:

http://www51.wolframalpha.com/input/?i=integrate%281%2F%28sin%28x%29%2Bcos%28x%29%29dx%29

Es natürlich erstaunlich, dass man das als Schulaufgabe stellt, aber es gibt nichts, das es nicht gibt.

Grüße,
dormant

Bezug
                                
Bezug
Integral: rückantwort
Status: (Frage) beantwortet Status 
Datum: 20:14 Fr 28.05.2010
Autor: Mimuu

vielen dank für den link. echt super.
aber wir rechne ich dass "manuell" aus?
das ergebnis sieht zwar toll aus, aber wie komm ich dahin?

Bezug
                                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Fr 28.05.2010
Autor: MontBlanc

Hallo,

dort steht doch "Show Steps" .

Das Integral hier löst sich am besten indem du [mm] t=tan\left(\bruch{x}{2}\right) [/mm] substituierst, dann ist [mm] sin(x)=\bruch{2t}{1+t^2} [/mm] und [mm] cos(x)=\bruch{1-t^2}{1+t^2} [/mm] und [mm] dx=\bruch{2 dt}{1+t^2} [/mm] .

Dann hast du ein Integral in t, was du mit partialbrüchen usw zu leibe rücken kannst.


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]