www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integral
Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: uneigentliche Integrale
Status: (Frage) beantwortet Status 
Datum: 16:38 So 22.01.2006
Autor: antikind

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Wie kann man formal beweisen, dass ein uneigentliches Integral Lebesgue integrierbar ist?

z.B die Funktion [mm] 1/(x^3) [/mm] in den Grenzen 1 bis unendlich.

Ich denke dass diese Funktion lebesgue integrierbar ist, da ihr Integral absolut gegen 1/2 konvergiert.

ich weiß halt nur irgendwie nicht wie man das schön formuliert.



        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 So 22.01.2006
Autor: Stefan

Hallo antikind!

Es gilt der folgende Satz:

Ist $I [mm] \subset \IR$ [/mm] ein Intervall und $f: I [mm] \to \IR$ [/mm] Riemann-integrierbar über jedes kompakte Teilintervall von $I$, so ist $f$ genau dann Lebesgue-intergrierbar über $I$, wenn $|f|$ uneigentlich Riemann-integrierbar ist über $I$, und dann stimmt das uneigentliche Riemann-Integral von $f$ über $I$ mit dem Lebesgue-Integral überein.

Damit wird die Aussage dann trivial und lässt sich gut zeigen (über die Existenz des uneigentlichen Riemann-Integrals).

Liebe Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]