www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Inneres, Abschluss, Rand
Inneres, Abschluss, Rand < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inneres, Abschluss, Rand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Di 01.05.2007
Autor: Fuffi

Aufgabe
Ich soll Inneres, Abschluss und Rand folgender Menge bestimmen:

M [mm] \subseteq \IR^{2} [/mm] , M:= [mm] \{ (x, cos\bruch{1}{x}) | 0 < x \le \bruch{1}{\pi} \} [/mm]

Mein erster Gedanke war, dass der Abschluss von M gleich ganz M ist. Aber das kann ja eigentlich nicht sein, da M in [mm] \IR^{2} [/mm] weder offen noch abgeschlossen ist, oder nicht? Also was ist der Abschluss?

Ich habe ausserdem rausbekommen, dass das Innere [mm] M^{0}=\{ (x, cos\bruch{1}{x}) | 0 < x < \bruch{1}{\pi} \} [/mm] ist, stimmt das?

Der Rand müsste dann ja das sein, was im Abschluss aber nicht im Inneren liegt.

MfG
Fuffi

Ich habe diese Frage in keinem anderen Forum und auf keinen anderen Internetseiten gestellt.

        
Bezug
Inneres, Abschluss, Rand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Di 01.05.2007
Autor: Hund

Hallo,

musste die gleiche Aufgabe löse und habe folgendes raus:
Rand=M und {(0,y);-1<=y<=1}, weil eine Folge in M gegen genau diese Werte konvergiert, falls sie konvergiert. Für x gegen 0 oszilliert der cos ähnlich wie die "Wackelfunktion" unendlich oft zwischen -1 und 1, daher der rechte Ausdruck.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]