www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Innere, Abschluss, Komplement
Innere, Abschluss, Komplement < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Innere, Abschluss, Komplement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 Di 09.04.2013
Autor: sissile

Aufgabe
Wie folgt aus [mm] \{A \subseteq B => \overline{A} \subseteq \overline{B}\} [/mm]
die Aussage [mm] \{ A \subseteq B => A^o \subseteq B^o \} [/mm]

Der Lehrer meinte, das sehe man mit Komplementbildung(X \ $ [mm] A^o [/mm] $ = $ [mm] \overline{(X ohne A )} [/mm] $ und X \ $ [mm] \overline{A} [/mm] $ = (X \ $ [mm] A)^o [/mm] $). Ich habe nicht ganz verstanden, wie er das meint..

lg

        
Bezug
Innere, Abschluss, Komplement: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Mi 10.04.2013
Autor: fred97


> Wie folgt aus [mm]\{A \subseteq B => \overline{A} \subseteq \overline{B}\}[/mm]
>  
> die Aussage [mm]\{ A \subseteq B => A^o \subseteq B^o \}[/mm]
>  Der
> Lehrer meinte, das sehe man mit Komplementbildung(X \ [mm]A^o[/mm] =
> [mm]\overline{(X ohne A )}[/mm] und X \ [mm]\overline{A}[/mm] = (X \ [mm]A)^o [/mm]).
> Ich habe nicht ganz verstanden, wie er das meint..
>  
> lg


Ich nehme an, X ist ein topologischer Raum.

Wenn ich Dich richtig verstanden habe, darfst Du verwenden, falls M und N Teilmengen von X sind:

  1. M [mm] \subseteq [/mm] N => [mm] \overline{M} \subseteq \overline{N} [/mm]

und

   2. $X [mm] \setminus M^o [/mm]  = [mm] \overline{X \setminus M} [/mm] $.

Zeigen sollst Du für Teilmengen A und B von X:

   A [mm] \subseteq [/mm] B => [mm] A^o \subseteq B^o. [/mm]

Zunächst folgt aus  A [mm] \subseteq [/mm] B , dass X [mm] \setminus [/mm] B [mm] \subseteq [/mm] X [mm] \setminus [/mm] A ist.

Aus 1. folgt dann:

       [mm] \overline{X \setminus B} \subseteq \overline{X \setminus A}. [/mm]

Mit 2. bekommen wir:

       X [mm] \setminus B^o \subseteq [/mm]  X [mm] \setminus A^o, [/mm]

also

   $ [mm] A^o \subseteq B^o. [/mm] $


FRED



    

Bezug
                
Bezug
Innere, Abschluss, Komplement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:50 Do 11.04.2013
Autor: sissile

Danke, das Prinzip hab ich verstanden und konnte es auf andere Fälle übertragen. Jedoch bei einem bin ich gescheitert:


Wie folgt aus $ [mm] \{\overline{A\cup B}=\overline{A} \cup \overline{B}\} [/mm] $
die Aussage $ [mm] \{ (A\cap B)^o = A^o \cap B^o \} [/mm] $

Versuche:
X [mm] \setminus [/mm] ((A [mm] \cap B)^o [/mm] ) = [mm] \overline{ X \setminus (A \cap B) } [/mm]
[mm] X\setminus (A^o \cap B^o [/mm] ) = X [mm] \setminus A^o \cap [/mm]  X [mm] \setminus B^o [/mm] = [mm] \overline{X \setminus A} \cap \overline{X \setminus B} [/mm]
Ich muss sicher De Morgan regeln verwenden, aber ich seh's nicht wie..

LG

Bezug
                        
Bezug
Innere, Abschluss, Komplement: Antwort
Status: (Antwort) fertig Status 
Datum: 08:26 Do 11.04.2013
Autor: hippias


> Danke, das Prinzip hab ich verstanden und konnte es auf
> andere Fälle übertragen. Jedoch bei einem bin ich
> gescheitert:
>  
>
> Wie folgt aus [mm]\{\overline{A\cup B}=\overline{A} \cup \overline{B}\}[/mm]
> die Aussage [mm]\{ (A\cap B)^o = A^o \cap B^o \}[/mm]
>
> Versuche:
>  X [mm]\setminus[/mm] ((A [mm]\cap B)^o[/mm] ) = [mm]\overline{ X \setminus (A \cap B) }[/mm]
>  
> [mm]X\setminus (A^o \cap B^o[/mm] ) = X [mm]\setminus A^o \cap[/mm]  X
> [mm]\setminus B^o[/mm] = [mm]\overline{X \setminus A} \cap \overline{X \setminus B}[/mm]
>  
> Ich muss sicher De Morgan regeln verwenden, aber ich seh's
> nicht wie..

Wie man sie anwenden soll? Richtig, sie sollten immer richtig angewendet werden ;-)
[mm] $X\setminus (A^o \cap B^o [/mm] ) = X [mm] \setminus A^o \red{\cup} [/mm] X [mm] \setminus B^o=\ldots [/mm] $

>  
> LG


Bezug
                                
Bezug
Innere, Abschluss, Komplement: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:51 Do 11.04.2013
Autor: sissile


>  Wie man sie anwenden soll? Richtig, sie sollten immer
> richtig angewendet werden ;-)

Guter Tipp;) Passend zu meinen Fehler!


Danke,lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]