www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Deutsche Mathe-Olympiade" - Inkreisaufgabe
Inkreisaufgabe < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inkreisaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Do 18.08.2011
Autor: KingStone007

Hallo, es geht um die dritte Aufgabe des folgenden Wettbewerbs:
[]41.Matheolympiade 3. Stufe

Ich habe leider kaum einen Ansatz wie ich an diese Aufgabe rangehen sollte. Habt ihr vllt eine Idee?

Lg, David

        
Bezug
Inkreisaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Do 18.08.2011
Autor: reverend

Hallo David,

mach erstmal eine Skizze, und probiere es umgekehrt:

(oops, meine 1. Version war gerade Unsinn. Hier nochmal neu):

1) Wenn die beiden Inkreise der Teildreiecke sich berühren sollen, dann schneidet die Gerade durch die beiden Mittelpunkte die Strecke [mm] \overline{CD} [/mm] genau senkrecht. Bestimme daraus die Lage von Punkt D.

2) Bestimme den Berührpunkt des Inkreises von [mm] \triangle{ABC} [/mm] (wobei eine Spiegelung an der Winkelhalbierenden von [mm] \alpha [/mm] hilfreich ist), und zeige, dass er mit D identisch ist.

Ich lasse die Frage teilweise offen, falls noch jemand eine elegantere Idee hat. ;-)

Viel Erfolg,
reverend


Bezug
        
Bezug
Inkreisaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Sa 20.08.2011
Autor: Leopold_Gast

Die Seiten des Dreiecks [mm]ABC[/mm] sind Tangenten des Inkreises. Daher ist die Entfernung von [mm]A[/mm] zu den Berührpunkten des Inkreises mit den Strecken [mm]AB[/mm] bzw. [mm]AC[/mm] dieselbe. Nennen wir diese [mm]u[/mm]. Die entsprechenden Strecken von [mm]B[/mm] bzw. [mm]C[/mm] aus mögen [mm]v,w[/mm] heißen. Aus dem linearen Gleichungssystem

[mm]u+v = c \, , \ \ v+w = a \, , \ \ w+u = b[/mm]

lassen sich [mm]u,v,w[/mm] ermitteln. Wir brauchen nur

(*)  [mm]u = \frac{1}{2} \left( -a+b+c \right)[/mm]

Jetzt sei [mm]D[/mm] auf der Strecke [mm]AB[/mm] gewählt, so daß [mm]AD[/mm] die Länge [mm]t[/mm] und [mm]BD[/mm] die Länge [mm]c-t[/mm] hat. Die Länge der Strecke [mm]CD[/mm] heiße [mm]p[/mm]. Der Berührpunkt des Inkreises von [mm]ADC[/mm] mit [mm]CD[/mm] sei [mm]S[/mm], der Berührpunkt des Inkreises von [mm]BDC[/mm] mit [mm]CD[/mm] sei [mm]T[/mm].

1. Wir wenden (*) auf das Dreieck mit den Ecken [mm]A'= D, \, B' = C, \, C'= A[/mm] an. Gib damit die Länge [mm]u'[/mm] der Strecke [mm]DS[/mm] in Abhängigkeit von [mm]a,b,c,t,p[/mm] an.

2. Wir wenden (*) auf das Dreieck mit den Ecken [mm]A'' = D, \, B'' = C, \, C'' = B[/mm] an. Gib damit die Länge [mm]u''[/mm] der Strecke [mm]DT[/mm] in Abhängigkeit von [mm]a,b,c,t,p[/mm] an.

3. Dann gilt: [mm]S = T \ \ \Leftrightarrow \ \ u' = u''[/mm]. Und jetzt ist nur noch die Äquivalenz der letzten Bedingung mit [mm]t = u[/mm] nachzuweisen. Einfach ausrechnen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]