www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Injektivität der Komposition
Injektivität der Komposition < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität der Komposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Do 30.08.2007
Autor: utze

Aufgabe
f: X [mm] \to [/mm] Y und g: Y [mm] \to [/mm] Z seien Abbildungen. Beweisen oder widerlegen Sie folgende Aussagen:

a) Sind f und g injektiv, so ist g [mm] \circ [/mm] f injektiv
b) Ist g [mm] \circ [/mm] f injektiv, so ist f injektiv
c) Ist g [mm] \circ [/mm] f injektiv, so ist g injektiv

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich habe häufig Probleme mit Aufgabenstellungen dieser Art.

Rein intuitiv würde ich behaupten dass Aussagen a u. c wahr sind und b falsch.

Laut Definition ist eine Fkt. injektiv falls jedes Elememt der Wertemenge nur einmal angenommen wird und damit aus [mm] f(x_{1})=f(x_{2}) \Rightarrow x_{1}=x_{2} [/mm] folgt.
Das habe ich soweit verstanden, leider aber keinen Ansatz wie man so etwas beweisen bzw. widerlegen kann.

Über einen kleinen Schubs in die richtige Richtung würde ich mich sehr freuen.

Freundliche Grüße


        
Bezug
Injektivität der Komposition: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Do 30.08.2007
Autor: angela.h.b.


> f: X [mm]\to[/mm] Y und g: Y [mm]\to[/mm] Z seien Abbildungen. Beweisen oder
> widerlegen Sie folgende Aussagen:
>  
> a) Sind f und g injektiv, so ist g [mm]\circ[/mm] f injektiv
>  b) Ist g [mm]\circ[/mm] f injektiv, so ist f injektiv
>  c) Ist g [mm]\circ[/mm] f injektiv, so ist g injektiv


> Laut Definition ist eine Fkt. injektiv falls ...aus
> [mm]f(x_{1})=f(x_{2}) \Rightarrow x_{1}=x_{2}[/mm] folgt.
>  Das habe ich soweit verstanden, leider aber keinen Ansatz
> wie man so etwas beweisen bzw. widerlegen kann.

Hallo,

[willkommenmr].

Aufgabe a) kannst Du nun einach unter Anwendung der Definition lösen.

Nach Voraussetzung sind f,g injektiv.

Nun seien a,b [mm] \in [/mm] X mit

[mm] (g\circ f)(a)=(g\circ [/mm] f)(b)

==> g(f(a))=g(f(b))

Nun bring die Voraussetzung, daß g injektiv ist, ins Spiel.

==>....


Schau Dir für c) mal dies an:

f: [mm] \IR_{\ge 0}\to \IR, [/mm]
[mm] f(x):=\wurzel{x} [/mm]

g: [mm] \IR \to \IR [/mm]
[mm] g(x):=x^2 [/mm]

[mm] g\circ [/mm] f: [mm] \IR_{\ge =} \to \IR [/mm]
[mm] (g\circ [/mm] f):=...


zu b) Diese Behauptung stimmt.

Nimm zum Beweis an, daß [mm] g\circ [/mm] f injektiv ist und f nicht injektiv und führe dies zu einem Widersprüch.

Also: Sei [mm] g\circ [/mm] f injektiv.

Angenommen, f ist nicht injektiv.

Dann gibt es a, b mit [mm] a\not=b [/mm] und f(a)=f(b).

Nun wende hierauf g an.


> Rein intuitiv würde ich behaupten dass Aussagen a u. c wahr sind und b falsch.

Es ist ja bei b) und c) genau umgekehrt.

Ich weiß ja nicht, wie Du Deine Intuition gewonnen hast. Falls Du Bildchen mit Pfeilen gezeichnet hast, bedenke folgendes:

[mm] (g\circ [/mm] f )(x)=g(f(x)) gewinnt man, indem man zuerst die Abbildung f auf x anwendet und anschließend aufs Ergebnis g.
Man macht das beim Malen leicht falsch rum am Anfang.

Gruß v. Angela








Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]