www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Injektive Holomorphe Abbildung
Injektive Holomorphe Abbildung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektive Holomorphe Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Do 23.06.2016
Autor: Killercat

Aufgabe
[mm] G \subset \mathbb {C}[/mm] ein hom. triviales Gebiet und [mm] z_0 [/mm] ein Punkt in G. Zeigen Sie:
- dass es für jedes [mm]n \in \mathbb{N}[/mm] eine holomorphe injektive Abb. [mm]f_n :G \rightarrow \mathbb {C}[/mm] gibt mit [mm]f_n(z_0) = 1-\frac {1}{n}[/mm]
- die Folge [mm] f_n [/mm] konvergiert lok. glm. gegen eine nicht injektive holomorphe Abb.

Hallo,

ich brauche etwas Hilfe, um einen Ansatz für diese Aufgabe zu finden. Ich habe zwar so ziemlich alle Hilfsmittel aus der klassischen Funktionentheorie zur Verfügung, aber ich finde wie gesagt keinen Ansatz, um etwas über die Form der Abb. [mm] f_n [/mm] aussagen zu können.
Meine erste Idee war es, hier den Riemmanschen Abb.Satz anzuwenden. Der Beweis dazu liefert mir ja die Existenz der gesuchten Abb. Ich brauche jetzt nur etwas Hilfe, wie ich auf die gesuchte Form komme.

Mit freundlichen Grüßen
Tobias

        
Bezug
Injektive Holomorphe Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Do 23.06.2016
Autor: fred97


> [mm]G \subset \mathbb {C}[/mm] ein hom. triviales Gebiet und [mm]z_0[/mm] ein
> Punkt in G.


Hallo Tobias,



In der Funktionentheorie bin ich eigentlich sehr gut zu Hause, aber "hom. triviales Gebiet" habe ich noch nicht gehört (gelesen). Was ist das ?




> Zeigen Sie:
>  - dass es für jedes [mm]n \in \mathbb{N}[/mm] eine holomorphe
> injektive Abb. [mm]f_n :G \rightarrow \mathbb {C}[/mm] gibt mit
> [mm]f_n(z_0) = 1-\frac {1}{n}[/mm]
>  - die Folge [mm]f_n[/mm] konvergiert lok.
> glm. gegen eine nicht injektive holomorphe Abb.
>  Hallo,
>  
> ich brauche etwas Hilfe, um einen Ansatz für diese Aufgabe
> zu finden. Ich habe zwar so ziemlich alle Hilfsmittel aus
> der klassischen Funktionentheorie zur Verfügung, aber ich
> finde wie gesagt keinen Ansatz, um etwas über die Form der
> Abb. [mm]f_n[/mm] aussagen zu können.
>  Meine erste Idee war es, hier den Riemmanschen Abb.Satz
> anzuwenden. Der Beweis dazu liefert mir ja die Existenz der
> gesuchten Abb. Ich brauche jetzt nur etwas Hilfe, wie ich
> auf die gesuchte Form komme.

1. Sei f der lokal glm. Limes der Folge [mm] (f_n). [/mm] Die [mm] (f_n) [/mm] sind injektiv und f nicht. Ein Satz von Hurwitz besagt: f ist konstant.

2. Ich hab mir den Ansatz [mm] f_n(z)=a_n(z-z_0)+b_n [/mm] überlegt (mit komplexen Folgen [mm] (a_n) [/mm] und [mm] (b_n)). [/mm]

Wegen  $ [mm] f_n(z_0) [/mm] = [mm] 1-\frac [/mm] {1}{n} $ muss [mm] $b_n=1-\frac [/mm] {1}{n} $ sein.

Damit dann [mm] (f_n) [/mm] lok. glm. gegen eine Konstante (s.1.) konvergiert, bietet sich an, [mm] (a_n) [/mm] als Nullfolge zu wählen. Such Dir eine aus.

FRED

>  
> Mit freundlichen Grüßen
>  Tobias


Bezug
                
Bezug
Injektive Holomorphe Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Do 23.06.2016
Autor: Killercat

Ich formulier das mal als Frage, damit das vernünftig angezeigt wird.
Wenn man unserem Prof glauben schenken darf, dann ist dieser Begriff quasi überflüssig, weil nach dem Riemmanschen Abb. Satz homologisch trivial und einfach zusammenhängend äquivalent sind.
Alternativ hier unsere Definition:
http://www.mi.uni-koeln.de/~clange/Existenz%20der%20Stammfunktionen.pdf

Bezug
                        
Bezug
Injektive Holomorphe Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:54 Fr 24.06.2016
Autor: fred97


> Ich formulier das mal als Frage, damit das vernünftig
> angezeigt wird.
>  Wenn man unserem Prof glauben schenken darf, dann ist
> dieser Begriff quasi überflüssig, weil nach dem
> Riemmanschen Abb. Satz homologisch trivial und einfach
> zusammenhängend äquivalent sind.
>  Alternativ hier unsere Definition:
>  
> http://www.mi.uni-koeln.de/~clange/Existenz%20der%20Stammfunktionen.pdf


Ja, nun sind wir im Bilde:

     homologisch trivial = einfach zusammenhängend.

Zur Konstruktion der [mm] (f_n) [/mm] hast Du keinen Pups gelassen ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]