www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Injektiv, surjektiv, bijektiv
Injektiv, surjektiv, bijektiv < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektiv, surjektiv, bijektiv: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 11:29 Fr 04.02.2011
Autor: martinmax1234

Aufgabe
Sei V = [mm] R^N. [/mm] Betrachten Sie die zwei Abbildungen:
1 : V --> V ;   (x1; x2;...) --> (x2; x3;...)
2 : V´ --> V´ ; (x1; x2;...) --> (1; x2; x3;...)
Welche dieser Abbildungen sind injektiv? Welche sind surjektiv? Welche sind R-linear?




Ich weiß schon, was injenktiv, surjektiv und bijektiv ist und welche definition sie haben. Zu 1: würde ich sagen, dass die Bildmenge mehr Elemente enthält als die zielmenge und somit ein Element zweimal getroffen wird, also surjektiv. Bei der 2: würd ich sagen ink. + surj. = Bijektiv.

Ich weiß nicht, obs richtig ist, aber ich weiß auch nciht wie ich es mathematisch aufschreiben kann.
Wäre super, wenn mir das einer erklären könnte.


        
Bezug
Injektiv, surjektiv, bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Fr 04.02.2011
Autor: fred97


> Sei V = [mm]R^N.[/mm] Betrachten Sie die zwei Abbildungen:
>  1 : V --> V ;   (x1; x2;...) --> (x2; x3;...)

>  2 : V´ --> V´ ; (x1; x2;...) --> (1; x2; x3;...)

>  Welche dieser Abbildungen sind injektiv? Welche sind
> surjektiv? Welche sind R-linear?
>  
>
> Ich weiß schon, was injenktiv, surjektiv und bijektiv ist
> und welche definition sie haben. Zu 1: würde ich sagen,
> dass die Bildmenge mehr Elemente enthält als die zielmenge


Neijn, das ist Unfug !


> und somit ein Element zweimal getroffen wird,

Unfug.


> also
> surjektiv.


Da stimmt.  Wir nennen die Abbildung mal f.  Nimm [mm] (y_1,y_2, [/mm] ...) [mm] \in [/mm] V. Dann ist [mm] f(0,y_1,y_2, [/mm] ...)=  [mm] (y_1,y_2, [/mm] ...)


Bei der 2: würd ich sagen ink. + surj. =

Nein, weder noch !  Wir nennen die Abbildung g:  Liegt denn (0,0,0,...= im Bild von g  ?


Weiter ist g(0,0,0,...)=g(1,0,0,..)

FRED

> Bijektiv.
>  
> Ich weiß nicht, obs richtig ist, aber ich weiß auch nciht
> wie ich es mathematisch aufschreiben kann.
>  Wäre super, wenn mir das einer erklären könnte.
>  


Bezug
        
Bezug
Injektiv, surjektiv, bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Fr 04.02.2011
Autor: martinmax1234


Ich habs ehrlich gesagt immer noch nicht gerafft. Wie gehe ich an so eine Aufgabe grundsätzlich heran?
Wir nehmen mal die erste Abbildung:

<font class="ForumMessage" color="#000000">g. V-->V (x1; x2;...) --> (x2;
x3;...)

g(x1,x2,...)=(x2,x3,....) Muss ich das Komponenetweise betrachten? D.H
g(x1)=0, g(x2)=x2 usw. ? </font>
Ich weiß es nicht, hoffe auf eure hilfe :-(


Bezug
                
Bezug
Injektiv, surjektiv, bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Fr 04.02.2011
Autor: Teufel

Hi!

Sei eine Abbildung f:A [mm] \to [/mm] B gegeben.
Für Injektivität musst du zeigen:
Ist $x [mm] \not= [/mm] x'$ $(x, [mm] x'\in [/mm] A)$, so muss [mm] $f(x)\not=f(x')$ [/mm] sein. Oder in Worten: 2 verschiedene x-Werte werden auf 2 verschiedene y-Werte geworfen, für alle x. So was ist z.B. bei f(x)=x der Fall, aber nicht bei [mm] f(x)=x^2, [/mm] weil dort f(-1)=1=f(1) (f soll dabei von [mm] \IR [/mm] nach [mm] \IR [/mm] gehen).
Oder noch anders gesagt: Jeder Wert aus B wird höchstens einmal angenommen.

Für Surjektivität musst du zeigen, dass es für alle $b [mm] \in [/mm] B$ ein $a [mm] \in [/mm] A$ gibt mit f(a)=b. In Worten: Die Abbildung f muss jeden Wert aus b annehmen. Oder nochmal anders: Jeder Wert aus B wird mindestens einmal angenommen.
Beispiel: $f: [mm] \IR \to \IR, [/mm] f(x)=x$ ist surjektiv (und sogar bijektiv, weil es auch injektiv ist), $f: [mm] \IR \to \IR, f(x)=x^2$ [/mm] ist nicht surjektiv, weil z.B. die [mm] $-1\in\IR$ [/mm] nicht angenommen wird.

Alles klar?
Beispielsweise für die 1. Abbildung:
Injektivität:
Schau dir mal an, was die Bilder von z.B. (1,0,0,...) und (0,0,0,...) sind. Diese sind ja unterschiedlich, aber was passiert mit den Bildern? Was bedeutet das dann?

Surjektivität:
Versuch mal zu einem beliebiges Wert aus der Zielmenge (die ja gleich der Definitionsmenge ist) ein Urbild zu finden. Wenn du das schaffst, wäre die Abbildung surjektiv. Wenn nicht, dann nicht.

Bezug
                        
Bezug
Injektiv, surjektiv, bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Fr 04.02.2011
Autor: martinmax1234


Zunächst vielen dank für deine ausführlche Antwort was injektiv, surjektiv sind. Alles super verständlich nur kann ich mit den definitonen nicht richtig viel anfangen. Wenn ich ne Funktion gegeben habe, wie du es mir gezeigt hast als beispiel ist es keine Problem. Aber bei der 1. Abbildung stehe ich immer noch auf dem Schlauch:

g: V --> V , (x1; x2;...) --> (x2; x3;...)
Ich sollte mir (1,0,0....) anschauen
(1,0,0,...)--->(0,0,0,...) Für alle meine Elemente aus (1,0,0,...) gibt es höchstens ein Element aus (0,0,0...) Aber was nun? Hier ist mein Problem? Scxhaue ich mir das Paarsweise an also: g(1)=0 und g(0)=0, wegen g(x1)=x2 usw. Wäre echt super, wenn mir das mal einer zeigen könnte, die zweite Abbildung versuche ich dann aleine.



Bezug
                                
Bezug
Injektiv, surjektiv, bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Fr 04.02.2011
Autor: leduart

Hallo


> g: V --> V , (x1; x2;...) --> (x2; x3;...)
>  Ich sollte mir (1,0,0....) anschauen
>  (1,0,0,...)--->(0,0,0,...) Für alle meine Elemente aus
> (1,0,0,...) gibt es höchstens ein Element aus (0,0,0...)

was soll das denn? was soll ein Element aus (1,0,0,...) sein, das hat doch keine elemente , sonder ist ein Element von V
sieh dir nochmal an, von wo nach wo du abbildest. es sieht aus als denkst du an ne Abbildung von R nach R?
Gruss leduart


Bezug
                                        
Bezug
Injektiv, surjektiv, bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Sa 05.02.2011
Autor: martinmax1234


Genau das könnte mein problem sein, dass ich von R nach R denke. Wie ist es den sonst gemeint? Wie würdet ihr an diese abbildung rangehen. Einmal nur den weg dorthinh aufschreiben. die zweite abbildung mahc ich dann selbstständig


Bezug
                                                
Bezug
Injektiv, surjektiv, bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Sa 05.02.2011
Autor: fred97

Mit V = $ [mm] R^N. [/mm] $ ist die Menge aller reellen Folgen gemeint. Sei [mm] (x_n) [/mm] eine solche Folge. Die este Abildung ordnet der Folge [mm] (x_n) [/mm]  die Folge [mm] (x_{n+1}) [/mm] zu.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]