www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Injektiv, surjektiv
Injektiv, surjektiv < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektiv, surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Mi 31.10.2007
Autor: superstar

Aufgabe
Es sei X eine nicht leere Menge, und f,g: X->X seien Abbilungen mit [mm] g\circ f=id_x. [/mm] Zeigen Sie:
a) f ist injektiv und g ist surjektiv
b) Ist X endlich, so sind f ung g bijektiv
c) Finden Sie Abbildungen f,g: N-> N mit folgenden Eigenschaften: f ist nicht surjektiv, g ist nicht injektiv und [mm] g\circ [/mm] f= [mm] id_N [/mm]

Hallo,
ich habe so meine Probleme mit injektiv und surjektiv.
zu a) g hat rechtsinverses. f:M ->M mit der Eigenschaft [mm] g\circ f=id_M. [/mm] Dann ist f injektiv. Wenn M abzählbar ist, so auch M.
Bew: Es gibt bijektion M-> M' [mm] \subset [/mm] N
M -> M -> M' [mm] \subset [/mm] M

bin ich jetzt mit dem Beweis fertig? Ist das überhaupt richtig?
zu b) wie zeige ich nochmal, dass etwas endlich ist?

zu c) kann mir hier jemand einen Tipp geben?
Wäre echt nett von euch. LG

        
Bezug
Injektiv, surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Mi 31.10.2007
Autor: angela.h.b.


> Es sei X eine nicht leere Menge, und f,g: X->X seien
> Abbilungen mit [mm]g\circ f=id_x.[/mm] Zeigen Sie:
>  a) f ist injektiv und g ist surjektiv
>  b) Ist X endlich, so sind f ung g bijektiv
>  c) Finden Sie Abbildungen f,g: N-> N mit folgenden

> Eigenschaften: f ist nicht surjektiv, g ist nicht injektiv
> und [mm]g\circ[/mm] f= [mm]id_N[/mm]

Hallo,

bzgl der Aufgaben verweise ich Dich zunächst auf zwei Threads der letzten Tage, in denen auch Deine Aufgaben bearbeitet wurden.
(Wenn Du fleißig suchst, wirst du diese Aufgabenin größerer Anzahl finden, da bin ich mir fast sicher.)

Es ist sicher effektiv, wenn Du erstmal da und dort schaust und anschließend offen gebliebene Fragen stellst.

Ich möchte Dir aber injektiv und surjektiv erklären.

Sei f: [mm] D\to [/mm] W

Injektiv bedeutet, daß jedes Element y der Wertemenge W von höchstens einem Element aus der Defmenge D "getroffen" wird,
daß es also höchstens ein [mm] x\in [/mm] D gibt mit f(x)=y. Es werden nicht zwei Elemente aus dem Definitionsbereich auf dasselbe Element abgebildet.

In Zeichensprache notiert: f injektiv   <==> (f(a)=f(b) ==> a=b )     (gleiche Funktionswerte ==> gleiche Argumente)

Surjektiv bedeutet, daß jedes Element des Wertebereiches W von (mindestens) einem Element getroffen wird.
Kein Element des Wertebereiches geht leer aus.

Für alle [mm] y\in [/mm] W gibt es ein [mm] x\in [/mm] D mit f(x)=y.

Für bijektiv sind dann beide Bedingungen erfüllt: auf jedes Element des Wertebereiches wird genau ein Element des Definitionsbereiches abgebildet.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]