www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Infimum und Supremum
Infimum und Supremum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum und Supremum: "Korrektur"
Status: (Frage) beantwortet Status 
Datum: 17:32 Mi 06.11.2013
Autor: monkeyphenomenon

Aufgabe
[mm] M=\bigcap_{n=1}^{\infty}[0,\bruch{1}{n}) [/mm]

Berechnen Sie ohne formalen Beweis Infimum und Supremum. Entscheiden Sie außerdem, ob es sich um ein Maximum oder Minimum handelt.

1. Ich verstehe das große Schnittmengenzeichen nicht ganz. Von was wird hier die Schnittmenge genommen? Gibt es hier überhaupt eine Schnittmenge oder handelt es sich hierbei um eine leere Menge?

2. Das Infimum ist meiner Meinung nach 0, genau wie das Minimum.

3. Ein Maximum gibt es meiner Meinung nach nicht. Beim Supremum bin ich mir nicht sicher. Da das Intervall rechtsseitig ist und der Bruch gegen 0 konvergiert, je größer n, müsste das Supremum doch ebenfalls 0 sein, oder nicht? Dürfen Supremum und Infimum denn denselben Wert annehmen?

4. Würde sich etwas an dem Ergebnis ändern, wenn das Intervall rechts geschlossen wäre? [mm] Also:[0,\bruch{1}{n}] [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=530859

        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Mi 06.11.2013
Autor: Gonozal_IX

Hiho,

>  1. Ich verstehe das große Schnittmengenzeichen nicht ganz. Von was wird hier die Schnittmenge genommen?

Von den hinter dem Schnittzeichen stehenden Mengen.
In diesem Fall ist es also

$ [mm] M=\bigcap_{n=1}^{\infty}A_n [/mm] $ mit [mm] $A_n [/mm] = [mm] [0,\bruch{1}{n})$ [/mm]

> Gibt es hier überhaupt eine Schnittmenge

Ja.

> 2. Das Infimum ist meiner Meinung nach 0, genau wie das Minimum.

[ok]

>
> 3. Ein Maximum gibt es meiner Meinung nach nicht.

[notok]

> Beim  Supremum bin ich mir nicht sicher. Da das Intervall
> rechtsseitig ist und der Bruch gegen 0 konvergiert, je
> größer n, müsste das Supremum doch ebenfalls 0 sein,

[ok]

> Dürfen Supremum und Infimum denn denselben Wert annehmen?

Natürlich. Was bedeutet das für die Menge M?

> 4. Würde sich etwas an dem Ergebnis ändern, wenn das
> Intervall rechts geschlossen wäre? [mm]Also:[0,\bruch{1}{n}][/mm]

Mach dir doch erstmal klar, welche Elemente alle in dem Schnitt drin sind.


Gruß,
Gono.

Bezug
                
Bezug
Infimum und Supremum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Mi 06.11.2013
Autor: monkeyphenomenon

Danke schon mal!
Dann bedeutet das doch, dass die einzige Schnittmenge 0 ist (unabhängig von dem Bruch, da der ja eh ausgeschlossen ist aus dem Intervall und gegen 0 geht)

Dann exsistiert ebenfalls ein Maximum, nämlich 0.

Die Menge M ist also genau 0.

Ist das richtig?

Wenn dann das Intervall geschlossen wäre, dürfte sich das Ergebnis eigentlich nicht ändern, denn es gibt doch, wenn man den Bruch mal seperat betrachtet, keine Schnittmenge, die in allen unendlichen Mengen enthalten wäre, oder irre ich mich da? Denn der Bruch wird doch immer kleiner, und somit haben zwar einzelne Mengen eine Schnittmenge, aber niemals die Gesamtheit aller unendlichen Mengen.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]