Infimum und Supremum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:02 Mo 30.10.2006 | Autor: | dienull |
Aufgabe | Es Sei X eine nicht-leere, nach unten beschränkte Teilmenge der reelen Zahlen R.
Beweisen Sie, dass die Menge
-X
ein Supremum besitzt. Zeigen sie außerdem, dass inf(X) = - sup(-X). |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Da ich mich mit Beweisen insgesamt immer schwer tue, wollt ich fragen, ob mir jemand bei dieser Aufgabe helfen kann und versucht sie auch Schritt für Schritt zu erläutern.
X müsste ja bedeuten z.b [-2, unendl.
dann wäre -X [- unendl., 2
oder? Nur wie beweis ich jetzt, dass -X ein Supremum besitzt?
Beim zweiten Teil der Aufgabe weiss ich gar nicht weiter.
Danke schonmal!
|
|
|
|
Um zu beweisen, daß [mm]-X[/mm] ein Supremum besitzt, mußt du nur nachweisen, daß [mm]-X[/mm] nach oben beschränkt ist (Vollständigkeitsaxiom). Jetzt weißt du aber, daß X nach unten beschränkt ist, also eine untere Schranke [mm]\underline{M}[/mm] besitzt. Und dreimal darfst du raten, was jetzt wohl eine obere Schranke von [mm]-X[/mm] ist.
Letztlich läuft der ganze Beweis darauf hinaus, daß aus einer Ungleichung [mm]a \geq b[/mm] nach Multiplikation mit [mm]-1[/mm] die Ungleichung [mm]-a \leq -b[/mm] entsteht.
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 19:49 Mo 30.10.2006 | Autor: | dienull |
Heisst das dann einfach nur, dass a [mm] \ge [/mm] b die nach unten beschränkte Menge X beschreibt und wenn ich dann mit -1 multipliziere und -a [mm] \le [/mm] -b erhalte bewiesen habe, dass die Menge -X ein Supremum besitzt?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Mi 01.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|