www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Infimum einer Menge
Infimum einer Menge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum einer Menge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:27 Mi 05.09.2007
Autor: Deuterinomium

Aufgabe
Sind alle [mm] a \in A [/mm] von Null verschieden, so sei [mm] \bruch{1}{A} := \left\{ \bruch{1}{a}: a \in A \right\} [/mm].
Zeige: Ist [mm] inf A > 0 [/mm], so ist [mm] sup \bruch{1}{A}= \bruch{1}{inf A}[/mm].

Hallo zusammen, ich wollte mit dieser Aufgabe mein Verständnis von Supremum/ Infimum vertiefen und hab mir dazu folgenden Beweis überlegt:

Sei [mm] \alpha:=inf A \Rightarrow a\ge\alpha \quad \forall a \in A \Rightarrow \bruch{1}{a} \le \bruch{1}{\alpha} \quad \forall a \in A [/mm]. Also ist [mm] \bruch{1}{\alpha} [/mm] eine obere Schranke von [mm] \bruch{1}{A}[/mm].
Ferner gilt:  [mm] \alpha:=inf A \Rightarrow \forall \varepsilon_{1} > 0 [/mm] [mm] \exists a_{0} \in A:[/mm] [mm] a_{0} < \alpha + \varepsilon_{1} [/mm].
[mm] \Rightarrow \bruch{1}{\alpha}-\bruch{1}{a_{0}}<\bruch{1}{\alpha}-\bruch{1}{\alpha + \varepsilon_{1} }=\bruch{\varepsilon_{1}}{\alpha(\alpha + \varepsilon_{1})}=:\varepsilon [/mm]
Und damit: [mm] \bruch{1}{\alpha}-\bruch{1}{a_{0}}<\varepsilon [/mm]
[mm] \gdw \bruch{1}{a_{0}}>\bruch{1}{\alpha}-\varepsilon [/mm]
und damit ist [mm] \bruch{1}{\alpha}=\bruch{1}{inf A} [/mm] sogar die kleinste obere Schranke und damit : [mm] sup \bruch{1}{A}= \bruch{1}{inf A} [/mm].

Ich habe versucht den Beweis noch ein bisschen zu verfeinern und hab dazu folgendes aufgeschrieben:

Sei [mm] \alpha:=inf A \Rightarrow a\ge\alpha \quad \forall a \in A \Rightarrow \bruch{1}{a} \le \bruch{1}{\alpha} \quad \forall a \in A [/mm]. Also ist [mm] \bruch{1}{\alpha} [/mm] eine obere Schranke von [mm] \bruch{1}{A} [/mm].
Ferner gilt:  [mm] \alpha:=inf A \Rightarrow \forall \bruch{(\alpha)^2\varepsilon}{1-\alpha\varepsilon} > 0[/mm] [mm] \exists a_{0} \in A:[/mm] [mm] a_{0} < \alpha + \bruch{(\alpha)^2\varepsilon}{1-\alpha\varepsilon} [/mm].
[mm] \Rightarrow \bruch{1}{\alpha}-\bruch{1}{a_{0}}<\bruch{1}{\alpha}-\bruch{1}{\alpha + \bruch{(\alpha)^2\varepsilon}{1-\alpha\varepsilon} }=\bruch{\bruch{(\alpha)^2\varepsilon}{1-\alpha\varepsilon}}{\alpha(\alpha + \bruch{(\alpha)^2\varepsilon}{1-\alpha\varepsilon})}=\bruch{(\alpha)^2\varepsilon}{(\alpha)^2-(\alpha)^3\varepsilon +(\alpha)^3\varepsilon}=\varepsilon [/mm]
Und damit: [mm] \bruch{1}{\alpha}-\bruch{1}{a_{0}}<\varepsilon [/mm]
[mm] \gdw \bruch{1}{a_{0}}>\bruch{1}{\alpha}-\varepsilon [/mm]
und damit ist [mm] \bruch{1}{\alpha}=\bruch{1}{inf A} [/mm] sogar die kleinste obere Schranke und damit : [mm] sup \bruch{1}{A}= \bruch{1}{inf A} [/mm].

Es wäre nett wenn ihr mal nachschauen würdet ob die beiden Wege richtig sind. Bei dem zweiten bin ich mir bei der Wahl der Abweichung nicht sicher, es löst sich zwar eleganter auf, aber die Behauptung "größer null" trifft hier doch nicht immer zu oder?

Vielen Dank schon mal.

Gruß Deuterinomium

        
Bezug
Infimum einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Mi 05.09.2007
Autor: Somebody


> Sind alle [mm]a \in A[/mm] von Null verschieden, so sei [mm]\bruch{1}{A} := \left\{ \bruch{1}{a}: a \in A \right\} [/mm].
> Zeige: Ist [mm]inf A > 0 [/mm], so ist [mm]sup \bruch{1}{A}= \bruch{1}{inf A}[/mm].
>  
> Hallo zusammen, ich wollte mit dieser Aufgabe mein
> Verständnis von Supremum/ Infimum vertiefen und hab mir
> dazu folgenden Beweis überlegt:
>  
> Sei [mm]\alpha:=inf A \Rightarrow a\ge\alpha \quad \forall a \in A \Rightarrow \bruch{1}{a} \le \bruch{1}{\alpha} \quad \forall a \in A [/mm].
> Also ist [mm]\bruch{1}{\alpha}[/mm] eine obere Schranke von
> [mm]\bruch{1}{A}[/mm].
>  Ferner gilt:  [mm]\alpha:=inf A \Rightarrow \forall \varepsilon_{1} > 0[/mm]
> [mm]\exists a_{0} \in A:[/mm] [mm]a_{0} < \alpha + \varepsilon_{1} [/mm].
>  
> [mm]\Rightarrow \bruch{1}{\alpha}-\bruch{1}{a_{0}}<\bruch{1}{\alpha}-\bruch{1}{\alpha + \varepsilon_{1} }=\bruch{\varepsilon_{1}}{\alpha(\alpha + \varepsilon_{1})}=:\varepsilon[/mm]
>  
> Und damit: [mm]\bruch{1}{\alpha}-\bruch{1}{a_{0}}<\varepsilon[/mm]
>  [mm]\gdw \bruch{1}{a_{0}}>\bruch{1}{\alpha}-\varepsilon[/mm]
>  und
> damit ist [mm]\bruch{1}{\alpha}=\bruch{1}{inf A}[/mm] sogar die
> kleinste obere Schranke und damit : [mm]sup \bruch{1}{A}= \bruch{1}{inf A} [/mm].

Scheint mir plausibel, wenngleich stellenweise etwas gar kompliziert.

> Ich habe versucht den Beweis noch ein bisschen zu
> verfeinern

[verwirrt] Ich hätte gedacht, dass in der Mathematik "verfeinern" eher ein Codewort für "vereinfachen" ist. Jedenfalls verwirrt mich Dein (mit Verlaub gesagt unnötig komplizierter) "verfeinerter" Weg soweit, dass mir dabei die Lust vergeht, dessen Richtigkeit zu prüfen. (Ich markiere Deine Frage aus diesem Grunde als nur teilweise beantwortet.)

Meiner unmassgeblichen Meinung nach sollte man nicht zu schnell mit reziproken Werten operieren. Statt dessen würde ich etwa folgendes Vorgehen vorziehen:
Sei also [mm] $\inf(A)>0$. [/mm] Wir beweisen zuerst [mm] $\sup\frac{1}{A}\leq \frac{1}{\inf A}$: [/mm] Für alle [mm] $a\in [/mm] A$ folgt aus [mm] $\inf A\leq [/mm] a$ durch beidseitiges Reziproknehmen dieser Ungleichung, dass [mm] $\frac{1}{a}\leq \frac{1}{\inf A}$. [/mm] Somit ist [mm] $\frac{1}{\inf(A)}$ [/mm] eine obere Schranke von [mm] $\frac{1}{A}$ [/mm] und daher gilt: [mm] $\sup\frac{1}{A}\leq \frac{1}{\inf(A)}$. [/mm]
Nun zeigen wir auch noch [mm] $\frac{1}{\inf A}\leq \sup\frac{1}{A}$: [/mm] Sei [mm] $\varepsilon>0$ [/mm] beliebig, aber so klein, dass [mm] $0<\inf(A) -\varepsilon$ [/mm] ist. Aufgrund der Definition von [mm] $\inf [/mm] A$ gibt es daher ein [mm] $a\in [/mm] A$ mit [mm] $a<\inf(A)-\varepsilon$. [/mm] Durch beidseitiges Reziproknehmen dieser Ungleichung folgt: [mm] $\frac{1}{\inf(A)-\varepsilon}<\frac{1}{a}$ [/mm] und daher auch [mm] $\frac{1}{\inf A-\varepsilon}<\sup\frac{1}{A}$. [/mm] Nun lassen wir in dieser Ungleichung [mm] $\varepsilon \rightarrow [/mm] 0+$ gehen und erhalten, wie gewünscht: [mm] $\frac{1}{\inf A}\leq \sup\frac{1}{A}$. [/mm]


Bezug
                
Bezug
Infimum einer Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 Mi 05.09.2007
Autor: Deuterinomium

Danke für die Antwort! Dein Weg scheint in der Tat schöner und angenehmer.!

Gruß
Deuterinomium


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]