Induktionsbeweis Ungleichung < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Beweisen Sie durch Induktion:
[mm] 2n^{2}>(n+1)^{2} [/mm] für alle [mm] n\ge3 [/mm] |
Hallo an Alle.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hier mein Ansatz:
Induktionsanfang: n = 3:
[mm] 2*3^{2} =18>16=(3+1)^{2} [/mm] OK
Induktionsschluss: n+1
Linke Seite: [mm] 2(n+1)^{2}=2n^{2}+4n+2>(n+1)^{2}+4n+2=n^{2}+6n+3 [/mm] ...
Rechte Seite: [mm] ((n+1)+1)^{2}=n^{2}+4n+4 [/mm] ....
So mein Problem: Ich weiß nicht, ob mir noch ein (oder mehrere) Schritte fehlen, bis ich den Beweis schließen kann. Wenn ich recht überlege, wäre für alle n [mm] \ge3 [/mm] der Ausdruck [mm] n^{2}+6n+3 [/mm] > [mm] n^{2}+4n+4. [/mm] Aber ich bin mir nicht sicher, ob ich das dann so stehen lassen kann.
Kann mir wer sagen, ob noch was fehlt, oder ob der Beweis schon fertig ist?
Vielen Dank und schönes Wochenende
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:16 Sa 12.10.2013 | Autor: | abakus |
> Beweisen Sie durch Induktion:
> [mm]2n^{2}>(n+1)^{2}[/mm] für alle [mm]n\ge3[/mm]
> Hallo an Alle.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hier mein Ansatz:
>
> Induktionsanfang: n = 3:
> [mm]2*3^{2} =18>16=(3+1)^{2}[/mm] OK
>
> Induktionsschluss: n+1
> Linke Seite:
> [mm]2(n+1)^{2}=2n^{2}+4n+2>(n+1)^{2}+4n+2=n^{2}+6n+3[/mm] ...
>
> Rechte Seite: [mm]((n+1)+1)^{2}=n^{2}+4n+4[/mm] ....
>
> So mein Problem: Ich weiß nicht, ob mir noch ein (oder
> mehrere) Schritte fehlen, bis ich den Beweis schließen
> kann. Wenn ich recht überlege, wäre für alle n [mm]\ge3[/mm] der
> Ausdruck [mm]n^{2}+6n+3[/mm] > [mm]n^{2}+4n+4.[/mm] Aber ich bin mir nicht
> sicher, ob ich das dann so stehen lassen kann.
> Kann mir wer sagen, ob noch was fehlt, oder ob der Beweis
> schon fertig ist?
> Vielen Dank und schönes Wochenende
Hallo,
was du machst ist so ein Wischiwaschi, aber kein Induktionsbeweis.
Nach dem (erledigten) Induktionsanfang musst du folgenden Satz beweisen:
Wenn für ein n[mm]\ge[/mm]3 gilt [mm]2n^{2}>(n+1)^{2}[/mm], dann gilt für dieses n auch [mm]2(n+1)^{2}>((n+1)+1)^{2}[/mm].
Das wesentliche Mittel zum Beweis der zweiten Ungleichung ist die Annahme der Richtigkeit der ersten Ungleichung.
Die linke Seite ist (umgeformt) [mm]\blue{2n^2}+\red{4n+2}[/mm] , die rechte Seite ist [mm]\blue{(n+1)^2}+\red{2*(n+1)+1^2}=\blue{(n+1)^2}+\red{2*n+3}[/mm].
Aus der Gültigkeit von [mm]2n^{2}>(n+1)^{2}[/mm] folgt nun durch beidseitige Addition von (um auf den linken Term zu kommen) [mm]\red{4n+2}[/mm] die Gültigkeit der Ungleichung
[mm]2n^{2}+4n+2>(n+1)^{2}+4n+2[/mm]
Du hast nun noch zu zeigen, dass dies wiederum größer als [mm](n+1)^2+2n+3[/mm] ist.
Sehr sauber geht das, wenn man die Ungleichung [mm]2n^{2}+4n+2>(n+1)^{2}+4n+2[/mm]
gezielt fortsetzt mit
[mm]2n^{2}+4n+2>(n+1)^{2}+4n+2=(n+1)^{2}+2n+3\green{+2n-1}[/mm]
Jetzt kann man argumentieren, dass für n>2 der Term 2n-1 garantiert positiv ist.
Gruß Abakus
|
|
|
|